Abstract

A 2 K heat exchanger is essential for 2 K superfluid helium cryogenic systems, as it increases cooling capacity and improves overall system efficiency. The thermal performance of a 2 K heat exchanger is affected by many factors, such as fluid properties, operating conditions, and geometric parameters. The segmented effectiveness-NTU method approach is used to design the heat exchanger because the physical prosperities of helium vary significantly in the heat exchanger's working temperature, which greatly influences heat transfer characteristics. Meanwhile, the response surface methodology (RSM) is used to optimize the heat exchanger. The optimum combination of geometry parameters is found based on thermal performance and fabrication. According to analyses of single and multiple geometric characteristics by RSM, the tube diameter and fin number have the most significant impact on the heat exchanger performance. Finally, the performance of the heat exchanger is verified experimentally. The experimental results are in good agreement with the present design and optimization model.

References

1.
Niu
,
X.
,
Bai
,
F.
,
Wang
,
X.
,
Zhang
,
P.
,
Yang
,
Y.
,
Zhang
,
J.
, and
Sun
,
D.
,
2021
, “
2 K Cryogenic System Development for Superconducting Cavity Testing of CiADS
,”
Cryogenics
,
115
, p.
103247
.
2.
Lebrun
,
P.
, and
Tavian
,
L.
,
2015
, “
Cooling With Superfluid Helium
,” arXiv No. 1501.07156, pp.
453
476
.
3.
Barbier
,
A.
,
Xu
,
J.
,
Cui
,
J.
,
Machefel
,
A.
,
Mantileri
,
C.
,
Maccagnan
,
M.
,
Rogez
,
E.
, and
Roig
,
M.
,
2020
, “
Cryogenic System for Shanghai Synchrotron Radiation Facility
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
755
(
1
), p.
012083
.
4.
Gilbert
,
N.
,
Roussel
,
P.
,
Riddone
,
G.
,
Moracchioli
,
R.
, and
Tavian
,
L.
,
2006
, “
Performance Assessment of 239 Series Helium Sub-Cooling Heat Exchangers for the Large Hadron Collider
,”
AIP Conf. Proc.
,
823
(
1
), pp.
523
530
.
5.
Johnson
,
M. J.
,
Binkowski
,
J.
,
Bricker
,
S.
,
Casagrande
,
F.
,
Fox
,
A. D.
,
Lang
,
B. R.
,
Leitner
,
M.
, et al
,
2012
, “
Design of the FRIB Cryomodule
,” Paper No. JLAB-ACE-12-1570; DOE/OR/23177-2252. Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States).
6.
Daly
,
E. F.
,
Gianni
,
V.
,
Rode
,
C. H.
,
Schneider
,
W.
,
Wilson
,
K. M.
, and
Wiseman
,
M. A.
,
2001
, “
SNS Cryomodule Heat Load and Thermal Design
,” Paper No. JLAB-ACE-01-16; DOE/ER/40150-1994. Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States).
7.
Dalesandro
,
A.
,
Kaluzny
,
J.
, and
Klebaner
,
A.
,
2016
, “
Thermodynamic Analyses of the LCLS-II Cryogenic Distribution System
,”
IEEE Trans. Appl. Supercond.
,
27
(
4
), pp.
1
4
.
8.
Reynet
,
D.
,
Brault
,
S.
,
Duthil
,
P.
,
Pierens
,
M.
,
Duchesne
,
P.
,
Olry
,
G.
,
Gandolfo
,
G.
,
Rampnoux
,
E.
, and
Bousson
,
S.
,
2015
, “
ESS Spoke Cryomodule and Test Valve box
,”
Proceedings of the 17th International Conference on RF Superconductivity (SRF2015)
,
Whistler, Canada
,
Sept. 13–18
,
THPB109
.
9.
Chevalier
,
N. R.
,
Thermeau
,
J. P.
,
Bujard
,
P.
,
Junquera
,
T.
,
Hermansson
,
L.
,
Kern
,
R. S.
, and
Ruber
,
R.
,
2014
, “
Design of a Horizontal Test Cryostat for Superconducting RF Cavities for the Freia Facility at Uppsala University
,”
AIP Conf. Proc.
,
1573
(
1
), pp.
1277
1284
.
10.
Gupta
,
P. K.
, and
Rabehl
,
R.
,
2014
, “
Numerical Modeling of a 2 K JT Heat Exchanger Used in Fermilab Vertical Test Stand VTS-1
,”
Cryogenics
,
62
, pp.
31
36
.
11.
Polinski
,
J.
,
Chorowski
,
M.
,
Duda
,
P.
,
Bozhko
,
Y.
,
Petersen
,
B.
, and
Schaffran
,
J.
,
2014
, “
Design and Commissioning of Vertical Test Cryostats for XFEL Superconducting Cavities Measurements
,”
AIP Conf. Proc.
,
1573
(
1
), pp.
1214
1221
.
12.
Kumar
,
A.
,
Nakai
,
H.
,
Nakanishi
,
K.
,
Shimizu
,
H.
,
Kojima
,
Y.
,
Hara
,
K.
, and
Honma
,
T.
,
2019
, “
Performance Analysis for 2 K Heat Exchanger for Superfluid Cryogenic System at KEK
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
502
(
1
), p.
012051
.
13.
Kumar
,
A.
,
Nakai
,
H.
,
Nakanishi
,
K.
,
Shimizu
,
H.
,
Hara
,
K.
,
Kojima
,
Y.
, and
Honma
,
T.
,
2020
, “
Design Optimization of the 2 K Heat Exchanger for the Superfluid Helium Cryogenic Systems at KEK
,”
Cryogenics
,
111
, p.
103173
.
14.
Smith
,
E. N.
,
Eichhorn
,
R.
,
Quigley
,
P.
,
Sabol
,
D.
,
Shore
,
C.
, and
Widger
,
D.
,
2017
, “
Heat Exchanger Can Assembly for Provision of Helium Coolant Streams for Cryomodule Testing Below 2 K
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
171
(
1
), p.
012034
.
15.
Han
,
R.
,
Zou
,
Z.
,
Ge
,
R.
,
Chang
,
Z.
,
Zhang
,
J.
,
Xu
,
M.
,
Ye
,
R.
, et al.
,
2020
, “
Design Optimization, Construction and Testing of 2 K Joule-Thomson Heat Exchanger for a Superfluid Helium Cryogenic System
,”
Appl. Therm. Eng.
,
180
, p.
115774
.
16.
Gupta
,
P. K.
,
Kush
,
P. K.
, and
Tiwari
,
A.
,
2007
, “
Design and Optimization of Coil Finned-Tube Heat Exchangers for Cryogenic Applications
,”
Cryogenics
,
47
(
5–6
), pp.
322
332
.
17.
Ge
,
R.
,
Sun
,
L.
,
Xu
,
M.
,
Ye
,
R.
,
Zhang
,
X.
,
Sang
,
M.
,
Han
,
R.
, et al
,
2020
, “
2 K Superfluid Helium Cryogenic Vertical Test System for Superconducting Cavity of ADS Injector I
,”
Radiat. Detect. Technol. Methods
,
4
(
2
), pp.
131
138
.
18.
Ge
,
R.
,
Li
,
S. P.
,
Han
,
R. X.
,
Xu
,
M. F.
,
Sun
,
L. R.
,
Sang
,
M. J.
,
Ye
,
R.
, et al
,
2020
, “
ADS Injector-I 2 K Superfluid Helium Cryogenic System
,”
Nucl. Sci. Techniq.
,
31
(
1
), pp.
1
14
.
19.
Zhang
,
J.
,
Song
,
C. C.
,
Niu
,
X. F.
,
Wang
,
X. J.
,
Bai
,
F.
, and
Bi
,
H. L.
,
2021
, “
Investigation on the Thermal Performance of Spiral Wound Heat Exchanger for the Superfluid Helium Cryogenic System
,”
Cryogenics
,
115
, p.
103264
.
20.
Yang
,
P.
,
Zhang
,
Q.
,
Zhu
,
Z.
,
Zhang
,
C.
, and
Zong
,
Y.
,
2021
, “
Numerical Simulations of Sub-Atmospheric JT Heat Exchanger for Superfluid Helium Cryogenic System
,”
IEEE Trans. Appl. Supercond.
,
31
(
8
), pp.
1
5
.
21.
Bezerra
,
M. A.
,
Santelli
,
R. E.
,
Oliveira
,
E. P.
,
Villar
,
L. S.
, and
Escaleira
,
L. A.
,
2008
, “
Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry
,”
Talanta
,
76
(
5
), pp.
965
977
.
22.
Liu
,
Y.
,
Liu
,
L.
,
Liang
,
L.
,
Liu
,
X.
, and
Li
,
J.
,
2015
, “
Thermodynamic Optimization of the Recuperative Heat Exchanger for Joule–Thomson Cryocoolers Using Response Surface Methodology
,”
Int. J. Refrig.
,
60
, pp.
155
165
.
23.
Han
,
H. Z.
,
Li
,
B. X.
,
Wu
,
H.
, and
Shao
,
W.
,
2015
, “
Multi-Objective Shape Optimization of Double Pipe Heat Exchanger With Inner Corrugated Tube Using RSM Method
,”
Int. J. Therm. Sci.
,
90
, pp.
173
186
.
24.
Kola
,
P. V. K. V.
,
Pisipaty
,
S. K.
,
Mendu
,
S. S.
, and
Ghosh
,
R.
,
2021
, “
Optimization of Performance Parameters of a Double Pipe Heat Exchanger with Cut Twisted Tapes Using CFD and RSM
,”
Chem. Eng. Process.: Process Intensif.
,
163
, p.
108362
.
25.
Knudsen
,
P.
, and
Ganni
,
V.
,
2015
, “
Testing of a 4 K to 2 K Heat Exchanger With an Intermediate Pressure Drop
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
101
(
1
), p.
012105
.
26.
Croft
,
A. J.
, and
Tebby
,
P. B.
,
1970
, “
The Design of Finned-Tube Cryogenic Heat Exchangers
,”
Cryogenics
,
10
(
3
), pp.
236
238
.
27.
Timmerhaus
,
K. D.
, and
Flynn
,
T. M.
,
2013
,
Cryogenic Process Engineering
,
Springer Science & Business Media
,
New York
.
You do not currently have access to this content.