Abstract

Ascertaining the uncertainty in the aerothermal performance of blade tips is crucial, as it represents the most delicate component of modern gas turbines. In this research article, a novel and efficient approach is proposed for quantifying uncertainties in aerothermal performance using a combination of universal kriging, polynomial chaos expansions, and Smolyak sparse grid technology. This method was applied to investigate the aerothermal performance of a high-pressure gas turbine rotor blade tip with high-dimensional robustness. The outcomes of the uncertainty quantification calculation reveal that the downstream total pressure loss coefficient and leakage flowrate increase under normal-speed (subsonic) and high-speed (transonic) conditions. The key uncertainty input that affects the aerodynamic performance of normal-speed and high-speed squealer tip is inlet total pressure fluctuation, with a variance index on the leakage flowrate of normal-speed and high-speed squealer tip of up to 73.92 and 83.85%, respectively. The study suggests that it is more important to control the operating conditions fluctuation than the cavity depth machining accuracy for aerodynamic performance robustness, which applies to both normal-speed and high-speed squealer tips. In line with the aerodynamic performance, the heat flux of normal-speed and high-speed squealer tip increases during operation. Notably, the sensitivity of high-speed squealer tip aerodynamic performance to operating condition fluctuations increases compared to the normal-speed squealer tip, necessitating active intervention for fluctuations in operating conditions at a higher cost for the high-speed squealer tip. The sensitivity analysis results indicate that the inlet total temperature fluctuation is the key parameter that controls the normal-speed and high-speed squealer tip heat flux uncertainty. Finally, it is worth noting that while the use of ribs can effectively enhance the robustness of blade tip heat transfer performance, the heat flux near the root of the ribs fluctuates significantly, which may further increase the thermal fatigue tendency in this region during actual operation.

References

1.
Badran
,
O. O.
,
1999
, “
Gas-Turbine Performance Improvements
,”
Appl. Energy
,
64
(
1–4
), pp.
263
273
.
2.
Town
,
J.
,
Straub
,
D.
,
Black
,
J.
,
Thole
,
K. A.
, and
Shih
,
T. I.
,
2018
, “
State-of-the-Art Cooling Technology for a Turbine Rotor Blade
,”
ASME J. Turbomach.
,
140
(
7
), p.
071007
.
3.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.
4.
Denton
,
J. D.
,
1993
,
Loss Mechanisms in Turbomachines
,
Vol. 78897
,
American Society of Mechanical Engineers
,
New York
, p.
V002T14A001
.
5.
Wang
,
H.
,
Tao
,
Z.
,
Zhou
,
Z.
,
Zhao
,
G.
,
Han
,
F.
, and
Li
,
H.
,
2019
, “
An Investigation for the Turbine Blade Film Cooling Performance on the Suction Side Tip Region Under Rotating Condition
,”
Appl. Therm. Eng
,
150
, pp.
864
874
.
6.
Moore
,
J. O. H. N.
, and
Tilton
,
J. S.
,
1988
, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
18
26
.
7.
Li
,
C.
,
Xiang
,
J.
,
Song
,
L.
, and
Li
,
J.
,
2020
, “
An Aerothermal Analysis of the Effects of Tip Gap Height and Cavity Depth of a Gas Turbine Blade
,”
Int. J. Therm. Sci.
,
158
, p.
106521
.
8.
Jiang
,
S.
,
Li
,
Z.
, and
Li
,
J.
,
2022
, “
Effects of Rib Design on the Unsteady Tip Heat Transfer Amplitude for a Turbine Rotor Blade
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
10
), p.
101011
.
9.
Saxena
,
V.
,
Nasir
,
H.
, and
Ekkad
,
S. V.
,
2004
, “
Effect of Blade Tip Geometry on Tip Flow and Heat Transfer for a Blade in a Low-Speed Cascade
,”
ASME J. Turbomach.
,
126
(
1
), pp.
130
138
.
10.
Park
,
J. S.
,
Lee
,
S. H.
,
Kwak
,
J. S.
,
Lee
,
W. S.
, and
Chung
,
J. T.
,
2013
, “
Measurement of Blade Tip Heat Transfer and Leakage Flow in a Turbine Cascade With a Multi-Cavity Squealer Tip
,”
ASME Turbine Blade Tip Symposium
,
Hamburg, Germany
,
Sept. 30–Oct. 3
, Vol. 56079, p. V001T02A006.
11.
Park
,
J. S.
,
Lee
,
S. H.
,
Lee
,
W. S.
,
Chung
,
J. T.
, and
Kwak
,
J. S.
,
2016
, “
Heat Transfer and Secondary Flow With a Multicavity Gas Turbine Blade tip
,”
J. Thermophys. Heat Transf.
,
30
(
1
), pp.
120
129
.
12.
Wang
,
R.
,
Liu
,
X.
,
Hu
,
D.
,
Meng
,
F.
,
Li
,
D.
, and
Li
,
B.
,
2017
, “
Zone-Based Reliability Analysis on Fatigue Life of GH720Li Turbine Disk Concerning Uncertainty Quantification
,”
Aerosp. Sci. Technol
,
70
, pp.
300
309
.
13.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
14.
Li
,
W.
,
Jiang
,
H.
,
Zhang
,
Q.
, and
Woo Lee
,
S.
,
2014
, “
Squealer Tip Leakage Flow Characteristics in Transonic Condition
,”
ASME J. Eng. Gas. Turbines Power
,
136
(
4
), p.
042601
.
15.
Zhu
,
D.
,
Zhang
,
Q.
,
Lu
,
S.
, and
Teng
,
J.
,
2020
, “
Relative Casing Motion Effect on Squealer Tip Cooling Performance at Tight Tip Clearance
,”
ASME J. Therm. Sci. Eng. Appl.
, pp.
1
18
.
16.
Zhang
,
G.
,
Sundén
,
B.
, and
Xie
,
G.
,
2021
, “
“Corrigendum to” Combined Experimental and Numerical Investigations on Heat Transfer Augmentation in Truncated Ribbed Channels Designed by Adopting Fractal Theory
,
International Communications in Heat and Mass Transfer, 121 (2020), 105080
,”
Int. Commun. Heat Mass Transf.
,
126
, p.
105458
.
17.
Razaaly
,
N.
,
Persico
,
G.
, and
Congedo
,
P. M.
,
2019
, “
Impact of Geometric, Operational, and Model Uncertainties on the Non-Ideal Flow Through a Supersonic ORC Turbine Cascade
,”
Energy
,
169
, pp.
213
227
.
18.
Cheng
,
P.
,
1964
, “
Two-Dimensional Radiating Gas Flow by a Moment Method
,”
AIAA J.
,
2
(
9
), pp.
1662
1664
.
19.
Li
,
W.
,
Garg
,
A.
,
Xiao
,
M.
, and
Gao
,
L.
,
2021
, “
Optimization for Liquid Cooling Cylindrical Battery Thermal Management System Based on Gaussian Process Model
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021015
.
20.
Fan
,
C.
,
Li
,
Y.
,
Xia
,
X.-L.
, and
Sun
,
C.
,
2022
, “
Pore-Level Structural Optimization of Porous Foams for Enhancing Heat Transfer and Reducing Pressure Drop Simultaneously
,”
Int. Commun. Heat Mass Transf.
,
136
, p.
106215
.
21.
Hischier
,
I.
,
Hess
,
D.
,
Lipiński
,
W.
,
Modest
,
M.
, and
Steinfeld
,
A.
,
2009
, “
Heat Transfer Analysis of a Novel Pressurized air Receiver for Concentrated Solar Power via Combined Cycles
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
4
), p.
041002
.
22.
Lv
,
H.
,
Chen
,
X.
,
Li
,
X.
,
Ma
,
Y.
, and
Zhang
,
D.
,
2022
, “
Finding the Optimal Design of a Cantor Fractal-Based AC Electric Micromixer With Film Heating Sheet by a Three-Objective Optimization Approach
,”
Int. Commun. Heat Mass Transf.
,
131
, p.
105867
.
23.
Yamazaki
,
W.
, and
Mavriplis
,
D. J.
,
2013
, “
Derivative-Enhanced Variable Fidelity Surrogate Modeling for Aerodynamic Functions
,”
AIAA J.
,
51
(
1
), pp.
126
137
.
24.
Wang
,
X.
, and
Zou
,
Z.
,
2019
, “
Uncertainty Analysis of Impact of Geometric Variations on Turbine Blade Performance
,”
Energy
,
176
, pp.
67
80
.
25.
D’Ammaro
,
A.
, and
Montomoli
,
F.
,
2013
, “
Uncertainty Quantification and Film Cooling
,”
Comput. Fluids
,
71
, pp.
320
326
.
26.
Luo
,
J.
,
Xia
,
Z.
, and
Liu
,
F.
,
2021
, “
Robust Design Optimization Considering Inlet Flow Angle Variations of a Turbine Cascade
,”
Aerosp. Sci. Technol.
,
116
, p.
106893
.
27.
Stekli
,
J.
,
Irwin
,
L.
, and
Pitchumani
,
R.
,
2013
, “
Technical Challenges and Opportunities for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021011
.
28.
Sabater
,
C.
,
Bekemeyer
,
P.
, and
Görtz
,
S.
,
2022
, “
Robust Design of Transonic Natural Laminar Flow Wings Under Environmental and Operational Uncertainties
,”
AIAA J.
,
60
(
2
), pp.
767
782
.
29.
Sabharwall
,
P.
,
Clark
,
D. E.
,
Mizia
,
R. E.
,
Glazoff
,
M. V.
, and
McKellar
,
M. G.
,
2013
, “
Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011009
.
30.
Huang
,
M.
,
Li
,
Z.
, and
Li
,
J.
,
2022
, “
Investigations on the Aerothermal Performance of the Turbine Blade Winglet Squealer Tip Within an Uncertainty Framework
,”
Aerosp. Sci. Technol
,
123
, p.
107506
.
31.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat-Transfer Coefficients of a Turbine Blade-Tip and Near-Tip Regions
,”
J. Thermophys. Heat Transf.
,
17
(
3
), pp.
297
303
.
32.
Yan
,
X.
,
Ye
,
M.
, and
He
,
K.
,
2020
, “
Investigations Into Heat Transfer and Aerodynamic Performance of a Worn Squealer Tipped Turbine Stage
,”
ASME J. Turbomach.
,
142
(
9
), p.
091012
.
33.
Zou
,
Z.
,
Shao
,
F.
,
Li
,
Y.
,
Zhang
,
W.
, and
Berglund
,
A.
,
2017
, “
Dominant Flow Structure in the Squealer Tip Gap and Its Impact on Turbine Aerodynamic Performance
,”
Energy
,
138
, pp.
167
184
.
34.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
35.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
36.
Zimmerman
,
D.
,
Pavlik
,
C.
,
Ruggles
,
A.
, and
Armstrong
,
M. P.
,
1999
, “
An Experimental Comparison of Ordinary and Universal Kriging and Inverse Distance Weighting
,”
Math. Geol
,
31
(
4
), pp.
375
390
.
37.
Daum
,
F.
, and
Huang
,
J.
,
2003, March
, “
Curse of Dimensionality and Particle Filters
,”
2003 IEEE Aerospace Conference Proceedings (Cat. No. 03TH8652) (Vol. 4, p. 4_1979-4_1993)
,
Big Sky, MT
,
Mar. 8–15
.
38.
Schobi
,
R.
,
Sudret
,
B.
, and
Wiart
,
J.
,
2015
, “
Polynomial-Chaos-Based Kriging
,”
Int. J. Uncertain. Quantif.
,
5
(
2
), pp.
171
193
.
39.
Xiao
,
D.
,
Lin
,
Z.
,
Fang
,
F.
,
Pain
,
C. C.
,
Navon
,
I. M.
,
Salinas
,
P.
, and
Muggeridge
,
A.
,
2017
, “
Non-Intrusive Reduced-Order Modeling for Multiphase Porous Media Flows Using Smolyak Sparse Grids
,”
Int. J. Numer. Methods Fluids
,
83
(
2
), pp.
205
219
.
40.
Efron
,
B.
,
Hastie
,
T.
,
Johnstone
,
I.
, and
Tibshirani
,
R.
,
2004
, “
Least Angle Regression
,”
Ann. Statistics
,
32
, pp.
407
499
.
41.
Maehara
,
N.
, and
Shimoda
,
Y.
,
2013
, “
Application of the Genetic Algorithm and Downhill Simplex Methods (Nelder–Mead Methods) in the Search for the Optimum Chiller Configuration
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
433
442
.
42.
Li
,
Z.
, and
Zheng
,
M.
,
2009
, “
Development of a Numerical Model for the Simulation of Vertical U-Tube Ground Heat Exchangers
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
920
924
.
43.
Cherry
,
D. G.
,
Gay
,
C. H.
, and
Lenahan
,
D. T.
,
1982
,
Low Pressure Turbine Test Hardware Detailed Design Report
,
National Aeronautics and Space Administration, Lewis Research Center
,
Cleveland, OH
.
44.
De Maesschalck
,
C.
,
Lacor
,
C.
,
Paniagua
,
G.
,
Lavagnoli
,
S.
,
Remiot
,
A.
, and
Bricteux
,
L.
,
2017
, “
Performance Robustness of Turbine Squealer Tip Designs Due to Manufacturing and Engine Operation
,”
J. Propul. Power
,
33
(
3
), pp.
740
749
.
45.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.
46.
Mohammadi
,
A.
, and
Raisee
,
M.
,
2017
, “
Effects of Operational and Geometrical Uncertainties on Heat Transfer and Pressure Drop of Ribbed Passages
,”
Appl. Therm. Eng.
,
125
, pp.
686
701
.
47.
Wang
,
Y.
,
Song
,
Y.
,
Yu
,
J.
, and
Chen
,
F.
,
2018
, “
Effect of Cooling Injection on the Leakage Flow of a Turbine Cascade With Honeycomb tip
,”
Appl. Therm. Eng.
,
133
, pp.
690
703
.
48.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
,
2000
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 1—Experimental Results
,”
ASME J. Turbomach.
,
122
(
2
), pp.
263
271
.
49.
Shi
,
W.
,
Chen
,
P.
,
Li
,
X.
,
Jing
,
R.
, and
Jiang
,
H.
,
2020
, “
Uncertainty Quantification of the Effects of Squealer Tip Geometry Deviation on Aerothermal Performance
,”
Proc. Inst. Mech. Eng. Part A-J. Power Energy
,
234
(
7
), pp.
1026
1038
.
You do not currently have access to this content.