Abstract

This paper presents a numerical solution for the entropy generation analysis of a two-dimensional steady-state convective regime in an aluminum foam. The analysis specifically focuses on a parallel plate channel filled partially or totally with metal foam, which incorporates on the external surface a thermoelectric generator (TEG). Local thermal equilibrium hypothesis is considered in the investigation to model the behavior of the metal foam and heat transfer within the channel. An exhaust gas is considered a working fluid, and its thermophysical properties are the same as those of air. The independence of the properties from temperature is considered. An internal energy production is assumed inside the TEG. The governing equations related to the physical problem with metal foam, exhaust gas, and TEG are solved by ansys fluent code. The investigation is accomplished for different aluminum foam thicknesses with various mass flowrate of working fluid. In the analysis, different values of pore density and porosity are assigned to the aluminum foam. The first is with 5, 10, 20, and 40 PPI, the second is from 0.90 to 0.978. Entropy generation due to friction and thermal effects as well as total entropy generation are reported. For all pore density and porosity values, the total entropy generation presents an increase related to an increment in mass flowrate. Bejan number decreases with increment in dimensionless thickness and mass flowrate. It increases when the porosity value increases whereas at high mass flowrate and for assigned porosity the values present small difference for different pore density values.

References

1.
Brito
,
F. P.
,
Vieira
,
R.
,
Martins
,
J.
,
Goncalves
,
L. M.
,
Goncalves
,
A. P.
,
Coelho
,
R.
,
Lopes
,
E. B.
,
Symeou
,
E.
, and
Kyratsi
,
T.
,
2021
, “
Analysis of Thermoelectric Generator Incorporating N-Magnesium Silicide and P-Tetrahedrite Materials
,”
Energy Convers. Manage.
,
236
, p.
114003
.
2.
Cózar
,
I. R.
,
Pujol
,
T.
,
Massaguer
,
E.
,
Massaguer
,
A.
,
Montoro
,
L.
,
González
,
J. R.
,
Comamala
,
M.
, and
Ezzitouni
,
S.
,
2021
, “
Effects of Module Spatial Distribution on the Energy Efficiency and Electrical Output of Automotive Thermoelectric Generators
,”
Energies
,
14
(
8
), p.
2232
.
3.
Harish
,
S.
,
Sivaprahasam
,
D.
,
Jayachandran
,
B.
,
Gopalan
,
R.
, and
Sundararajan
,
G.
,
2021
, “
Performance of Bismuth Telluride Modules Under Thermal Cycling in an Automotive Exhaust Thermoelectric Generator
,”
Energy Convers. Manage.
,
232
, p.
113900
.
4.
Huang
,
K.
,
Yan
,
Y.
,
Wang
,
G.
, and
Li
,
B.
,
2021
, “
Improving Transient Performance of Thermoelectric Generator by Integrating Phase Change Material
,”
Energy
,
219
, p.
119648
.
5.
Heber
,
L.
, and
Schwab
,
J.
,
2020
, “
Modelling of a Thermoelectric Generator for Heavy-Duty Natural Gas Vehicles: Techno-Economic Approach and Experimental Investigation
,”
Appl. Therm. Eng.
,
174
, p.
115156
.
6.
Aljaghtham
,
M.
, and
Celik
,
E.
,
2020
, “
Design Optimization of Oil Pan Thermoelectric Generator to Recover Waste Heat From Internal Combustion Engines
,”
Energy
,
200
, p.
117547
.
7.
Kober
,
M.
,
2020
, “
Holistic Development of Thermoelectric Generators for Automotive Applications
,”
J. Electron. Mater.
,
49
(
5
), pp.
2910
2919
.
8.
Nader
,
W. B.
,
2020
, “
Thermoelectric Generator Optimization for Hybrid Electric Vehicles
,”
Appl. Therm. Eng.
,
167
, p.
114761
.
9.
Borhani
,
S. M.
,
Hosseini
,
M. J.
,
Pakrouh
,
R.
,
Ranjbar
,
A. A.
, and
Nourian
,
A.
,
2021
, “
Performance Enhancement of a Thermoelectric Harvester With a PCM/Metal Foam Composite
,”
Renew. Energy
,
168
, pp.
1122
1140
.
10.
Madruga
,
S.
,
2021
, “
Modeling of Enhanced Micro-Energy Harvesting of Thermal Ambient Fluctuations With Metallic Foams Embedded in Phase Change Materials
,”
Renew. Energy
,
168
, pp.
424
437
.
11.
Negash
,
A. A.
,
Choi
,
Y.
, and
Kim
,
T. Y.
,
2021
, “
Experimental Investigation of Optimal Location of Flow Straightener From the Aspects of Power Output and Pressure Drop Characteristics of a Thermoelectric Generator
,”
Energy
,
219
, p.
119565
.
12.
Qian
,
P.
,
Yuan
,
X.
,
Chen
,
Z.
,
Luo
,
C.
,
Huang
,
Z.
,
Zhu
,
X.
, and
Liu
,
M.
,
2021
, “
Experimental Study on a High Efficient and Ultra-Lean Burn Meso-Scale Thermoelectric System Based on Porous Media Combustion
,”
Energy Convers. Manage.
,
234
, p.
113966
.
13.
Diwania
,
S.
,
Agrawal
,
S.
,
Siddiqui
,
A. S.
, and
Singh
,
S.
,
2020
, “
Photovoltaic–Thermal (PV/T) Technology: A Comprehensive Review on Applications and Its Advancement
,”
Int. J. Energy Environ. Eng.
,
11
(
1
), pp.
33
54
.
14.
Choi
,
Y.
,
Negash
,
A.
, and
Kim
,
T. Y.
,
2019
, “
Waste Heat Recovery of Diesel Engine Using Porous Medium-Assisted Thermoelectric Generator Equipped With Customized Thermoelectric Modules
,”
Energy Convers. Manage.
,
197
, p.
111902
.
15.
Maduabuchi
,
C. C.
,
Ejenakevwe
,
K. A.
, and
Mgbemene
,
C. A.
,
2021
, “
Performance Optimization and Thermodynamic Analysis of Irreversibility in a Contemporary Solar Thermoelectric Generator
,”
Renew. Energy
,
168
, pp.
1189
1206
.
16.
Karana
,
D. R.
, and
Sahoo
,
R. R.
,
2021
, “
Experimental Study on Exergy and Sustainability Analysis of the Thermoelectric Based Exhaust Waste Heat Recovery System
,”
Int. J. Exergy
,
34
(
1
), pp.
1
15
.
17.
Sahoo
,
R. R.
, and
Karana
,
D. R.
,
2020
, “
Effect of Design Shape Factor on Exergonic Performance of a New Modified Extended-Tapering Segmented Thermoelectric Generator System
,”
Energy
,
200
, p.
117561
.
18.
Sun
,
H.
,
Ge
,
Y.
,
Liu
,
W.
, and
Liu
,
Z.
,
2019
, “
Geometric Optimization of Two-Stage Thermoelectric Generator Using Genetic Algorithms and Thermodynamic Analysis
,”
Energy
,
171
, pp.
37
48
.
19.
Arora
,
R.
,
Kaushik
,
S. C.
, and
Arora
,
R.
,
2016
, “
Thermodynamic Modeling and Multi-objective Optimization of Two Stage Thermoelectric Generator in Electrically Series and Parallel Configuration
,”
Appl. Therm. Eng.
,
103
, pp.
1312
1323
.
20.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
21.
Torabi
,
M.
,
Torabi
,
M.
,
Ghiaasiaan
,
S. M.
, and
Peterson
,
G. P.
,
2017
, “
The Effect of Al2O3-Water Nanofluid on the Heat Transfer and Entropy Generation of Laminar Forced Convection Through Isotropic Porous Media
,”
Int. J. Heat Mass Transfer
,
111
, pp.
804
816
.
22.
Torabi
,
M.
,
Karimi
,
N.
,
Peterson
,
G. P.
, and
Yee
,
S.
,
2017
, “
Challenges and Progress on the Modelling of Entropy Generation in Porous Media: A Review
,”
Int. J. Heat Mass Transfer
,
114
, pp.
31
46
.
23.
Nithyanandam
,
K.
, and
Mahajan
,
R. L.
,
2018
, “
Evaluation of Metal Foam Based Thermoelectric Generators for Automobile Waste Heat Recovery
,”
Int. J. Heat Mass Transfer
,
122
, pp.
877
883
.
24.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flow
,”
Comput. Meth. Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
25.
Sarmiento-Laurel
,
C.
,
Cardemil
,
J. M.
, and
Calderón-Muñoz
,
W. R.
,
2022
, “
Local Entropy Generation Model for Numerical CFD Analysis of Fluid Flows Through Porous Media, Under Laminar and Turbulent Regimes
,”
Eng. Appl. Comput. Fluid Mech.
,
16
(
1
), pp.
804
825
.
26.
Calmidi
,
V. V.
,
1998
, “
Transport Phenomena in High Porosity Metal Foams
,”
Ph.D. dissertation
,
University of Colorado
,
Boulder, CO
.
27.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.
28.
Rogl
,
G.
,
Grytsiv
,
A.
,
Bauer
,
E.
,
Rogl
,
P.
, and
Zehetbauer
,
M.
,
2010
, “
Thermoelectric Properties of Novel Skutterudites With Didymium: DDy (Fe1−x Cox)4 Sb12 and DDy (Fe1−x Nix)4 Sb12
,”
Intermetallics
,
18
(
1
), pp.
57
64
.
29.
Zhang
,
X.
, and
Zhao
,
L.
,
2015
, “
Thermoelectric Materials: Energy Conversion Between Heat and Electricity
,”
J. Materiomics
,
1
(
2
), pp.
92
105
.
30.
Amini
,
A.
,
Ekici
,
Ö
, and
Yakut
,
K.
,
2019
, “
Investigating the Effect of Medium Liquid Layer Circulation on Temperature Distribution in a Thermoelectric Generator Heat Exchanger Assembly
,”
ASME J. Energy Res. Technol.
,
141
(
4
), p.
041902
.
31.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2003
, “
The Second Law Analysis in Fundamental Convective Heat Transfer Problems
,”
Int. J. Therm. Sci.
,
42
(
2
), pp.
177
186
.
You do not currently have access to this content.