Abstract

The aim of this article is to introduce and discuss prediction power of the multiple regression technique, artificial neural network (ANN), and adaptive neuro-fuzzy interface system (ANFIS) methods for predicting the forced convection heat transfer characteristics of a turbulent nanofluid flow in a pipe. Water and Al2O3 mixture is used as the nanofluid. Utilizing fluent software, numerical computations were performed with volume fraction ranging between 0.3% and 5%, particle diameter ranging between 20 and 140 nm, and Reynolds number ranging between 7000 and 21,000. Based on the computationally obtained results, a correlation is developed for the Nusselt number using the multiple regression method. Also, based on the computational fluid dynamics results, different ANN architectures with different number of neurons in the hidden layers and several training algorithms (Levenberg–Marquardt, Bayesian regularization, scaled conjugate gradient) are tested to find the best ANN architecture. In addition, ANFIS is also used to predict the Nusselt number. In the ANFIS, number of clusters, exponential factor, and membership function (MF) type are optimized. The results obtained from multiple regression correlation, ANN, and ANFIS were compared. According to the obtained results, ANFIS is a powerful tool with a R2 of 0.9987 for predictions.

References

1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME International Mechanical Engineering Congress & Exposition
,
San Francisco, CA
,
Nov. 12–17
.
2.
Arani
,
A. A.
, and
Amani
,
J.
,
2013
, “
Experimental Investigation of Diameter Effect on Heat Transfer Performance and Pressure Drop of TiO2–Water Nanofluid
,”
Exp. Therm. Fluid. Sci.
,
44
, pp.
520
533
.
3.
Bajestan
,
E. E.
,
Niazmand
,
H.
,
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2011
, “
Numerical Investigation of Effective Parameters in Convective Heat Transfer of Nanofluids Flowing Under a Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4376
4388
.
4.
Peygamberzadeh
,
S. M.
,
Hashemabadi
,
H.
,
Jamnani
,
S. M.
, and
Hoseini
,
T.
,
2011
, “
Improving the Cooling Performance of Automobile Radiator With Al2O3/Water Nanofluid
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1833
1838
.
5.
Maddah
,
H.
, and
Ghasemi
,
N.
,
2017
, “
Experimental Evaluation of Heat Transfer Efficiency of Nanofluid in a Double Pipe Heat Exchanger and Prediction of Experimental Results Using Artificial Neural Networks
,”
Heat and Mass Transfer
,
53
(
12
), pp.
3459
3472
.
6.
Mohammed
,
H. A.
,
Shamani
,
A. N.
, and
Sheriff
,
J. M.
,
2012
, “
Thermal and Hydraulic Characteristics of Turbulent Nanofluids Flow in a Rib–Groove Channel
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1584
1594
.
7.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage.
,
52
(
1
), pp.
789
793
.
8.
Aghayari
,
R.
,
Maddah
,
H.
,
Ashori
,
F.
,
Hakiminejad
,
A.
, and
Aghili
,
M.
,
2015
, “
Effect of Nanoparticles on Heat Transfer in Mini Double Pipe Heat Exchangers in Turbulent Flow
,”
Heat Mass Transfer
,
51
(
3
), pp.
301
306
.
9.
Pak
,
C.
, and
Cho
,
I. Y.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersedfluids Withsub-Micron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
10.
Lai
,
W. Y.
,
Duculescu
,
B.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2006
, “
Convective Heat Transfer Withnanofluids in a Single 1.02-mm Tube
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE 2006)
,
Dec. 14
.
11.
Nguyen
,
T.
,
Roy
,
G.
,
Gauthier
,
C.
, and
Galanis
,
N.
,
2007
, “
Heat Transfer Enhancement Using Al2O3 Water Nanofluid for an Electronic Liquid Cooling System
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1501
1506
.
12.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3187
3196
.
13.
Nguyen
,
C. T.
,
Roy
,
G.
,
Gauthier
,
C.
, and
Galanis
,
N.
,
2005
, “
Heat Transfer Enhancements by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
530
546
.
14.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
1
), pp.
151
155
.
15.
Roy
,
G.
,
Nguyen
,
C. T.
, and
Lajoie
,
P. R.
,
2004
, “
Numerical Investigation of Laminar Flow and Heat Transfer in a Radial Flow Cooling System With the Use of Nanofluids
,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
497
511
.
16.
Sivashanmugam
,
P. S.
,
2010
, “
CFD Analysis of Heat Transfer Characteristics of Nanofluids in a Circular Tube Fitted With Helical Inserts in Laminar Flow
,”
IUP J. Chem. Eng.
,
2
, pp.
19
34
.
17.
Mohammed
,
H. A.
,
Hasan
,
H. A.
, and
Wahid
,
M. A.
,
2013
, “
Heat Transfer Enhancement of Nanofluids in a Double Pipe Heat Exchanger With Louvered Strip Inserts
,”
Int. Commun. Heat Mass Transfer
,
40
, pp.
36
46
.
18.
Suresh
,
S.
,
Venkitaraj
,
K. P.
,
Selvakumar
,
P.
, and
Chandrasekar
,
M.
,
2012
, “
Effect of Al2O3-Cu/Water Hybrid Nanofluid in Heat Transfer
,”
Exp. Therm. Fluid. Sci.
,
38
, pp.
54
60
.
19.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Soyez
,
G.
,
Thompson
,
L. J.
, and
Dimelfi
,
R. J.
,
1999
, “
Novel Thermal Properties of Nanostructured Materials
,”
Mater. Sci. Forum
,
312–314
, pp.
629
634
.
20.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5181
5188
.
21.
Mukherjee
,
S.
,
Jana
,
S.
,
Mishra
,
P. C.
,
Chaudhuri
,
P.
, and
Chakrabarty
,
S.
,
2021
, “
Experimental Investigation on Thermo-Physical Properties and Subcooled Flow Boiling Performance of Al2O3/Water Nanofluids in a Horizontal Tube
,”
Int. J. Therm. Sci.
,
159
.
22.
Esfe
,
M. H.
,
Saedodin
,
S.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2014
, “
Thermal Conductivity of Al2O3/Water Nanofluids
,”
J. Therm. Anal. Calorim.
,
117
(
2
), pp.
675
681
.
23.
Alsheri
,
F.
,
Madeleine
,
J. G.
, and
Combrinck
,
L.
,
2020
, “
Numerical Investigation of Heat Transfer Enhancement of a Water/Ethylene Glycol Mixture With Al2O3-TiO2 Nanoparticles
,”
Appl. Math. Comput.
,
369
.
24.
Suresh
,
S.
,
Venkitaraj
,
K. P.
,
Selvakumar
,
P.
, and
Chandrasekar
,
M.
,
2011
, “
Synthesis of Al2O3—Cu/Water Hybrid Nanofluids Using Two Step Method and Its Thermo Physical Properties
,”
Colloids Surf., A
,
388
(
1–3
), pp.
41
48
.
25.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
3
), pp.
240
250
.
26.
Hemmati-Sarapardeh
,
A.
,
Varamesh
,
A.
,
Amar
,
M. N.
,
Husein
,
M. M.
, and
Dong
,
M.
,
2020
, “
On the Evaluation of Thermal Conductivity of Nanofluids Using Advanced Intelligent Models
,”
Int. Commun. Heat Mass Transfer
,
118
.
27.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
28.
ansys fluent 2019 Theory Guide
,
2019
,
Fluent Inc.
,
ANSYS
,
Canonsburg
, PA.
29.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
2006
,
Fundamentals of Fluid Mechanics
, 5th ed.,
John Wiley & Sons Inc., New York
.
30.
Demirel
,
G.
,
2016
, “
Su Türbinleri Için Dirsek Tipi Emme Borusunun HAD Tabanlı Tasarımı ve Eniyilemesi
,”
M.Sc. dissertation
,
TOBB Ekonomi ve Teknoloji Üniversitesi
,
Ankara
.
31.
Ayli
,
E.
,
Bayer
,
O.
, and
Aradag
,
S.
,
2016
, “
Experimental Investigation and CFD Analysis of Rectangular Profile FINS in a Square Channel for Forced Convection Regimes
,”
Int. J. Therm. Sci.
,
109
, pp.
279
290
.
32.
Jang
,
J. S.
, and
Sun
,
C. T.
,
1995
, “
Neuro Fuzzy Modelling and Control
,”
Proc. IEEE
,
83
(
3
), pp.
378
406
.
33.
Esmaeili
,
M.
,
Osanloo
,
M.
,
Rashidinejad
,
F.
,
Bazzazi
,
A. A.
, and
Taji
,
M.
,
2014
, “
Multiple Regreession, ANN and ANFIS Models for Prediction of Backbreak in the Open bit Blasting
,”
Eng. Comput.
,
30
(
4
), pp.
549
558
.
34.
Abdulshahed
,
A. M.
,
Longstaff
,
A. P.
,
Fletcher
,
S.
, and
Myers
,
A.
,
2015
, “
Thermal Error Modelling of Machine Tools Based on ANFIS with Fuzzy c-Means Clustering Using a Thermal Imaging Camera
,”
Appl. Math. Model.
,
39
(
7
), pp.
1837
1852
.
35.
Mehrabi
,
M.
,
Sharifpur
,
M.
, and
Meyer
,
J. P.
,
2012
, “
Application of the FCM-Based Neuro-Fuzzy Inference System and Genetic Algorithm-Polynomial Neural Network Approaches to Modelling the Thermal Conductivity of Alumina–Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
39
(
7
), pp.
971
977
.
36.
Bezdek
,
J. C.
,
1973
, “
Fuzzy Mathematics in Pattern Classification
,”
Ph.D. dissertation
,
Cornell University
,
Ithaca, NY
.
37.
Deen
,
M. J.
,
2012
, “Advances in Imaging and Electron Physics,”
Silicon-Based Millimeter-Wave Technology
,
J.-F.
Luy
, and
P.
Russer
, eds.,
Springer
,
New York
, pp.
78
85
.
38.
Jothilakshmi
,
S.
, and
Gudivada
,
V. N.
,
2016
, “
Large Scale Data Enabled Evolution of Spoken Language Research and Applications
,”
Handbook Statist.
,
35
, pp.
301
305
.
39.
Ekinci
,
F.
,
Demirdelen
,
T.
, and
Bilgili
,
M.
,
2017
, “
Modelling of Wind Turbine Power Output by Using ANNs and ANFIS Techniques
,”
The 7th International Conference on Innovative Computing Technology
,
Jan. 11
.
40.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
, “
Heat Transfer in Automobile Radiator of the Tube Type
,”
Univ. Calif. Pubs. Eng.
,
2
, p.
443
.
41.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
.
You do not currently have access to this content.