Abstract

This study aims to develop a dimensionless model of the vacuum multi-effect membrane distillation (V-MEMD) system through which a preliminary prediction of the most critical performance indicators can be attained. The Buckingham Π theorem was utilized to define dimensionless parameters that enable the predicted relationships associated with independent input parameters to describe the essential performance indicators of the V-MEMD system. The obtained simplified model reduces the design parameters from ten to two effective dimensionless parameters to realize the realistic and actual behavior of the designated system. The self-sustained model can be used as a short-cut tool for design and performance analysis to avoid time-consuming experimentations and complicated theoretical models. The compatibility of the generated model is assessed by matching the expected response of the output dimensionless parameters of recovery ratio (Π6) and gain output ratio (GOR, Π12) to variations in the pressure ratio and cooling process. The model is validated with other works, and discrepancies are found to be within ±8% and ±0.8 for the recovery ratio and GOR, respectively. Furthermore, the specific thermal energy consumption (STEC) is correlated to the GOR assuming constant vaporization enthalpy and density of the distillate water. The correlation can predict STEC within 5% accuracy over various operating conditions for the supplied hot water.

References

1.
Wittholz
,
M. K.
,
O’Neill
,
B. K.
,
Colby
,
C. B.
, and
Lewis
,
D.
,
2008
, “
Estimating the Cost of Desalination Plants Using a Cost Database
,”
Desalination
,
229
(
1–3
), pp.
10
20
.
2.
González
,
D.
,
Amigo
,
J.
, and
Suárez
,
F.
,
2017
, “
Membrane Distillation: Perspectives for Sustainable and Improved Desalination
,”
Renew. Sustain. Energy Rev.
,
80
, pp.
238
259
.
3.
Khayet
,
M.
,
2013
, “
Solar Desalination by Membrane Distillation: Dispersion in Energy Consumption Analysis and Water Production Costs (a Review)
,”
Desalination
,
308
, pp.
89
101
.
4.
Koschikowski
,
J.
,
Wieghaus
,
M.
, and
Rommel
,
M.
,
2003
, “
Solar Thermal-Driven Desalination Plants Based on Membrane Distillation
,”
Desalination
,
156
(
1–3
), pp.
295
304
.
5.
Andrés-Mañas
,
J. A.
,
Roca
,
L.
,
Ruiz-Aguirre
,
A.
,
Acién
,
F. G.
,
Gil
,
J. D.
, and
Zaragoza
,
G.
,
2020
, “
Application of Solar Energy to Seawater Desalination in a Pilot System Based on Vacuum Multi-Effect Membrane Distillation
,”
Appl. Energy
,
258
, p.
114068
.
6.
Andrés-Mañas
,
J. A.
,
Ruiz-Aguirre
,
A.
,
Acién
,
F. G.
, and
Zaragoza
,
G.
,
2018
, “
Assessment of a Pilot System for Seawater Desalination Based on Vacuum Multi-Effect Membrane Distillation With Enhanced Heat Recovery
,”
Desalination
,
443
, pp.
110
121
.
7.
Ghaffour
,
N.
,
Lattemann
,
S.
,
Missimer
,
T.
,
Ng
,
K. C.
,
Sinha
,
S.
, and
Amy
,
G.
,
2014
, “
Renewable Energy-Driven Innovative Energy-Efficient Desalination Technologies
,”
Appl. Energy
,
136
, pp.
1155
1165
.
8.
Bindels
,
M.
,
Brand
,
N.
, and
Nelemans
,
B.
,
2018
, “
Modeling of Semibatch Air Gap Membrane Distillation
,”
Desalination
,
430
, pp.
98
106
.
9.
Hitsov
,
I.
,
De Sitter
,
K.
,
Dotremont
,
C.
,
Cauwenberg
,
P.
, and
Nopens
,
I.
,
2017
, “
Full-Scale Validated Air Gap Membrane Distillation (AGMD) Model Without Calibration Parameters
,”
J. Membr. Sci.
,
533
, pp.
309
320
.
10.
Ruiz-Aguirre
,
A.
,
Andrés-Mañas
,
J. A.
,
Fernández-Sevilla
,
J. M.
, and
Zaragoza
,
G.
,
2018
, “
Experimental Characterization and Optimization of Multi-Channel Spiral Wound Air Gap Membrane Distillation Modules for Seawater Desalination
,”
Sep. Purif. Technol.
,
205
, pp.
212
222
.
11.
Anvari
,
A.
,
Azimi Yancheshme
,
A. A.
,
Kekre
,
K. M.
, and
Ronen
,
A.
,
2020
, “
State-of-the-Art Methods for Overcoming Temperature Polarization in Membrane Distillation Process: A Review
,”
J. Membr. Sci.
,
616
, p.
118413
.
12.
Khayet
,
M.
, and
Matsuura
,
T.
,
2011
,
Membrane Distillation: Principles and Applications
,
Elsevier
,
New York
.
13.
Noamani
,
S.
,
Niroomand
,
S.
,
Rastgar
,
M.
,
McDonald
,
A.
, and
Sadrzadeh
,
M.
,
2021
, “
Development of a Self-Sustained Model to Predict the Performance of Direct Contact Membrane Distillation
,”
Sep. Purif. Technol.
,
263
, pp.
118407
.
14.
Lienhard
,
V.
, and
John
,
H.
,
2019
, “
Energy Savings in Desalination Technologies: Reducing Entropy Generation by Transport Processes
,”
ASME J. Heat Transfer
,
141
(
7
), p.
072001
.
15.
Mengual
,
J. I.
,
Khayet
,
M.
, and
Godino
,
M. P.
,
2004
, “
Heat and Mass Transfer in Vacuum Membrane Distillation
,”
Int. J. Heat Mass Transfer
,
47
(
4
), pp.
865
875
.
16.
Park
,
D.
,
Norouzi
,
E.
, and
Park
,
C.
,
2017
, “
Experimental and Numerical Study of Water Distillation Performance of Small-Scale Direct Contact Membrane Distillation System
,”
ASME 2017 International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9
.
17.
Najib
,
A.
,
Orfi
,
J.
,
Alansary
,
H.
,
Ali
,
E.
,
Abdulwahed
,
Z.
,
Alzahrani
,
S.
, and
Chafidz
,
A.
,
2020
, “
An Experimental Investigation of a Solar-Driven Desalination System Based on Multi-Effect Membrane Distillation
,”
Desalin. Water Treat.
,
198
(
9
), pp.
1
18
.
18.
Burhan
,
M.
,
Shahzad
,
M. W.
,
Ybyraiymkul
,
D.
,
Oh
,
S. J.
,
Ghaffour
,
N.
, and
Ng
,
K. C.
,
2019
, “
Performance Investigation of MEMSYS Vacuum Membrane Distillation System in Single Effect and Multi-Effect Mode
,”
Sustain. Energy Technol. Assess.
,
34
(
8
), pp.
9
15
.
19.
Boutikos
,
P.
,
Mohamed
,
E. S.
,
Mathioulakis
,
E.
, and
Belessiotis
,
V.
,
2017
, “
A Theoretical Approach of a Vacuum Multi-Effect Membrane Distillation System
,”
Desalination
,
422
, pp.
25
41
.
20.
Mohamed
,
E. S.
,
Boutikos
,
P.
,
Mathioulakis
,
E.
, and
Belessiotis
,
V.
,
2017
, “
Experimental Evaluation of the Performance and Energy Efficiency of a Vacuum Multi-Effect Membrane Distillation System
,”
Desalination
,
408
, pp.
70
80
.
21.
Ong
,
C. L.
,
Escher
,
W.
,
Paredes
,
S.
,
Khalil
,
A. S. G.
, and
Michel
,
B.
,
2012
, “
A Novel Concept of Energy Reuse From High Concentration Photovoltaic Thermal (HCPVT) System for Desalination
,”
Desalination
,
295
, pp.
70
81
.
22.
Pritchard
,
P. J.
, and
Mitchell
,
J. W.
,
2016
,
Fox and McDonald’s Introduction to Fluid Mechanics
,
John Wiley & Sons
,
Hoboken, NJ
.
23.
White
,
F. M.
,
1979
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
24.
Zaragoza
,
G.
,
Ruiz-Aguirre
,
A.
, and
Guillén-Burrieza
,
E.
,
2014
, “
Efficiency in the Use of Solar Thermal Energy of Small Membrane Desalination Systems for Decentralized Water Production
,”
Appl. Energy
,
130
, pp.
491
499
.
25.
Zhao
,
K.
,
Heinzl
,
W.
,
Wenzel
,
M.
,
Büttner
,
S.
,
Bollen
,
F.
,
Lange
,
G.
,
Heinzl
,
S.
, and
Sarda
,
N.
,
2013
, “
Experimental Study of the Memsys Vacuum-Multi-Effect-Membrane-Distillation (V-MEMD) Module
,”
Desalination
,
323
, pp.
150
160
.
26.
Wenzel
,
M.
,
Büttner
,
S.
,
Heinzl
,
W.
, and
Heinzl
,
S.
,
2015
, “
Distillation of High Concentrated Salt Solution by Vacuum Multi Effect Membrane Distillation (VMEMD) of Memsys
,”
Water Pract. Technol.
,
10
(
3
), pp.
478
485
.
27.
Najib
,
A.
,
Orfi
,
J.
,
Ali
,
E.
, and
Saleh
,
J.
,
2019
, “
Thermodynamics Analysis of a Direct Contact Membrane Distillation With/Without Heat Recovery Based on Experimental Data
,”
Desalination
,
466
, pp.
52
67
.
28.
Najib
,
A.
,
Orfi
,
J.
,
Ali
,
E.
,
Ajbar
,
A.
,
Boumaza
,
M.
, and
Al-Humaizi
,
K.
,
2017
, “
Performance Analysis of Cascaded Membrane Distillation Arrangement of Desalination of Brackish Water
,”
Desalin. Water Treat.
,
76
(
5
), pp.
19
29
.
You do not currently have access to this content.