Abstract

Multiple water jets and a cross air flow are used to cool a mold segment in a homogeneous and automated manner. The test segment was cooled from an initial temperature of 573 K. An average temperature difference of less than 3 K and a maximum temperature difference of less than 6 K were obtained along the length of the surface of the test segment during the entire duration of the cooling process as opposed to the traditional channel cooling approach where the mean and maximum temperature differences increase over time. The top surface of the test segment represents the mold/part interface which is of interest in this study. Using model predictive control (MPC) and a data-driven predictive model, the cooling speed of the test segment’s top surface was able to be maintained within ±5 K of the cooling ramp imposed. The results were compared to the results obtained when using a simpler On/Off algorithm for automated cooling. Compared to the simpler On/Off algorithm, there was an improvement in the accuracy of the cooling ramp with respect to its reference value of over 30% for most cooling ramps tested (5–25 K/min). A parametric study on the influence of the flowrates of the fluids on the cooling speed of the test segment’s surface was also conducted.

References

1.
Gombos
,
Z. J.
,
McCutchion
,
P.
, and
Savage
,
L.
,
2019
, “
Thermo-Mechanical Behaviour of Composite Moulding Compounds at Elevated Temperatures
,”
Compos. Part B
,
173
, p.
106921
. https://doi.org/10.1016/j.compositesb.2019.106921
2.
Chen
,
X.
,
Lam
,
Y. C.
, and
Li
,
D. Q.
,
2000
, “
Analysis of Thermal Residual Stress in Plastic Injection Molding
,”
J. Mater. Process. Technol.
,
101
(
1
), pp.
275
280
. https://doi.org/10.1016/S0924-0136(00)00472-6
3.
Wang
,
T.-H.
, and
Young
,
W.-B.
,
2005
, “
Study on Residual Stresses of Thin-Walled Injection Molding
,”
Eur. Polym. J.
,
41
(
10
), pp.
2511
2517
. https://doi.org/10.1016/j.eurpolymj.2005.04.019
4.
Arrizubieta
,
J. I.
,
Cortina
,
M.
,
Ostolaza
,
M.
,
Ruiz
,
J. E.
, and
Lamikiz
,
A.
,
2019
, “
Case Study: Modeling of the Cycle Time Reduction in a B-Pillar Hot Stamping Operation Using Conformal Cooling
,”
Procedia Manuf.
,
41
, pp.
50
57
. 10.1016/j.promfg.2019.07.028
5.
Deepika
,
S. S.
,
Patil
,
B. T.
, and
Shaikh
,
V. A.
,
2020
, “
Plastic Injection Molded Door Handle Cooling Time Reduction Investigation Using Conformal Cooling Channels
,”
Mater. Today: Proc.
,
27
(part 1), pp.
519
523
. 10.1016/j.matpr.2019.11.316
6.
Dimla
,
D. E.
,
Camilotto
,
M.
, and
Miani
,
F.
,
2005
, “
Design and Optimisation of Conformal Cooling Channels in Injection Moulding Tools
,”
J. Mater. Process. Technol.
,
164–165
, pp.
1294
1300
. 10.1016/j.jmatprotec.2005.02.162
7.
Marques
,
S.
,
Souza
,
A. F. D.
,
Miranda
,
J.
, and
Yadroitsau
,
I.
,
2015
, “
Design of Conformal Cooling for Plastic Injection Moulding by Heat Transfer Simulation
,”
Polímeros
,
25
(
6
), pp.
564
574
. https://doi.org/10.1590/0104-1428.2047
8.
Yan
,
J.
,
Bi
,
Q.
,
Liu
,
Z.
,
Zhu
,
G.
, and
Cai
,
L.
,
2015
, “
Subcooled Flow Boiling Heat Transfer of Water in a Circular Tube Under High Heat Fluxes and High Mass Fluxes
,”
Fusion Eng. Des.
,
100
, pp.
406
418
. https://doi.org/10.1016/j.fusengdes.2015.07.007
9.
Tymen
,
G.
,
Allanic
,
N.
,
Sarda
,
A.
,
Mousseau
,
P.
,
Plot
,
C.
,
Madec
,
Y.
, and
Caltagirone
,
J. P.
,
2018
, “
Temperature Mapping in a Two-Phase Water-Steam Horizontal Flow
,”
Exp. Heat Transfer
,
31
(
4
), pp.
317
333
. https://doi.org/10.1080/08916152.2017.1410505
10.
Incropera
,
F. P.
, and
Ramadhyani
,
S.
,
1994
, “Single-Phase, Liquid Jet Impingement Cooling of High-Performance Chips,”
Cooling of Electronic Systems
,
S.
Kakaç
,
H.
Yüncü
, and
K.
Hijikata
, eds.,
Springer
,
Dordrecht
, pp.
457
506
.
11.
Karwa
,
N.
,
Gambaryan-Roisman
,
T.
,
Stephan
,
P.
, and
Tropea
,
C.
,
2011
, “
Experimental Investigation of Circular Free-Surface Jet Impingement Quenching: Transient Hydrodynamics and Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1435
1443
. 10.1016/j.expthermflusci.2011.05.011
12.
Wei
,
T.-W.
,
Oprins
,
H.
,
Cherman
,
V.
,
Plas
,
G. V. D.
,
Wolf
,
I. D.
,
Beyne
,
E.
, and
Baelmans
,
M.
,
2019
, “
Experimental Characterization and Model Validation of Liquid Jet Impingement Cooling Using a High Spatial Resolution and Programmable Thermal Test Chip
,”
Appl. Therm. Eng.
,
152
, pp.
308
318
. https://doi.org/10.1016/j.applthermaleng.2019.02.075
13.
Whelan
,
B. P.
, and
Robinson
,
A. J.
,
2009
, “
Nozzle Geometry Effects in Liquid Jet Array Impingement
,”
Appl. Therm. Eng.
,
29
(
11
), pp.
2211
2221
. https://doi.org/10.1016/j.applthermaleng.2008.11.003
14.
Lee
,
S. G.
,
Kaviany
,
M.
, and
Lee
,
J.
,
2018
, “
Quench Subcooled-Jet Impingement Boiling: Two Interacting-Jet Enhancement
,”
Int. J. Heat Mass Transfer
,
126
, pp.
1302
1314
. 10.1016/j.ijheatmasstransfer.2017.05.081
15.
Teamah
,
M. A.
, and
Khairat
,
M. M.
,
2015
, “
Heat Transfer Due to Impinging Double Free Circular Jets
,”
Alexandria Eng. J.
,
54
(
3
), pp.
281
293
. https://doi.org/10.1016/j.aej.2015.05.010
16.
Menges
,
G.
,
Michaeli
,
W.
, and
Mohren
,
P.
,
2001
,
How to Make Injection Molds
,
Carl Hanser Verlag GmbH & Co. KG
,
Munich
.
17.
Rao
,
N.
, and
Schumacher
,
G.
,
2004
,
Design Formulas for Plastics Engineers
,
Hanser
,
Munich, Germany
.
18.
Bemporad
,
A.
,
Ricker
,
N. L.
, and
Morari
,
M.
,
2020
,
Model Predictive Control Toolbox - User's Guide
,
Mathworks
,
Natick, MA
.
19.
Simpkins
,
A.
,
2012
, “
System Identification: Theory for the User, 2nd Edition (L. Ljung, 1999) [On the Shelf]
,”
IEEE Robot. Autom. Mag.
,
19
(
2
), pp.
95
96
. 10.1109/MRA.2012.2192817
20.
Schmid
,
C.
, and
Biegler
,
L. T.
,
1994
, “
Quadratic Programming Methods for Reduced Hessian SQP
,”
Comput. Chem. Eng.
,
18
(
9
), pp.
817
832
. 10.1016/0098-1354(94)E0001-4
21.
Ishigai
,
S.
, and
Nakanishi
,
S.
,
1978
,
Boiling Heat Transfer for a Plane Water Jet Impinging on a Hot Surface
,
International Heat Transfer Conference
,
Toronto
, pp.
445
450
.
22.
Karwa
,
N.
, and
Stephan
,
P.
,
2013
, “
Experimental Investigation of Free-Surface Jet Impingement Quenching Process
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1118
1126
. 10.1016/j.ijheatmasstransfer.2013.05.014
23.
Agyeman
,
E.
,
Mousseau
,
P.
,
Sarda
,
A.
,
Edelin
,
D.
, and
Lecointe
,
D.
,
2019
, “
Etude Thermique Expérimentale de l’impact d’un Jet d’eau Sur Une Surface Métallique Concave
,”
CIFQ 2019
,
Baie St-Paul, Québec
.
24.
Agyeman
,
E. K. K.
,
Edelin
,
D.
, and
Lecointe
,
D.
,
2021
, “
Experimental Study of the Effect of a Cross Airflow on the Dynamics and Heat Transfer Performance of Impinging Circular Water Jets on a Concave Surface
,”
Heat Transfer Eng.
,
43
(
6
), pp.
1
14
. https://doi.org/10.1080/01457632.2021.1887640
25.
Yin
,
S.
,
Zhang
,
J.
,
Tong
,
L.
,
Yao
,
Y.
, and
Wang
,
L.
,
2013
, “
Experimental Study on Flow Patterns for Water Boiling in Horizontal Heated Tubes
,”
Chem. Eng. Sci.
,
102
, pp.
577
584
. 10.1016/j.ces.2013.08.026
You do not currently have access to this content.