Abstract

Effective thermodynamic analysis is quite necessary for proper system design performance and optimization of system processes. Energy is concerned with the quantitative evaluation of system processes. Nonetheless, exergy gives a qualitative analysis of the system processes. The present investigation deals with the study of exergy and energy analysis of the paddy drying processes in two tapered fluidized bed dryers having the tapered angle 5 deg and 10 deg, respectively, and one cylindrical bubbling fluidized bed dryer. The energy utilization (EU) and energy utilization ratio (EUR) for various operating parameters such as inlet air velocity, mass of paddy, temperature, a spiral, and cone angle are investigated. Similarly, the exergetic efficiency and the rate of exergy destruction are also studied for the same operating parameters. The EU and EUR are found to have an increasing order when the inlet air velocity, temperature, and mass of paddy increase. The trend of EU and EUR also increases with an addition of a spiral inside a dryer. The increasing cone angle of the dryer has a similar impact on EU and EUR as that of other operating parameters. Similarly, exergy utilization and exergetic efficiency also show an increment with the rise in inlet air velocity, mass of paddy, cone angle of dryer, and temperature. The incorporation of a spiral inside a dryer improves exergy utilization and exergetic efficiency. Hence, the conical dryer with a higher cone angle is found to be the best option for drying.

References

1.
Das
,
H. J.
,
Saikia
,
R.
, and
Mahanta
,
P.
,
2020
, “
Effects of Spiral and Cone Angles on Drying Characteristics and Energy Consumption of Fluidized Bed Paddy Dryer
,”
Dry. Technol.
,
38
, pp.
1
12
. 10.1080/07373937.2020.1832512
2.
Das
,
H. J.
,
Mahanta
,
P.
, and
Saikia
,
R.
,
2020
, “
Characterization of Sand Particles in a Bubbling Fluidized Bed With Diverging Riser
,”
Int. Commun. Heat Mass Transfer
,
119
, p.
104953
. 10.1016/j.icheatmasstransfer.2020.104953
3.
Tamuly
,
P.
,
Das
,
H. J.
, and
Mahanta
,
P.
,
2021
, “Experimental Investigation of Drying Characteristics of Tea in a Conical Bubbling Fluidized Bed Dryer,”
Recent Advances in Mechanical Engineering
,
K.
Pandey
,
R.
Misra
,
P.
Patowari
, and
U.
Dixit
, eds.,
Lecture Notes in Mechanical Engineering
,
Springer
,
Singapore
, pp.
583
591
.
4.
Singh
,
P.
,
Kalita
,
P.
, and
Mahanta
,
P.
,
2020
, “
Experimental Study of Food Grain Drying in a Gas–Solid Vortex Reactor
,”
Dry. Technol.
,
38
, pp.
1
13
. 10.1080/07373937.2020.1835948
5.
Das
,
H. J.
,
Mahanta
,
P.
,
Saikia
,
R.
, and
Aamir
,
M. S.
,
2020
, “
Performance Evaluation of Drying Characteristics in Conical Bubbling Fluidized Bed Dryer
,”
Powder Technol.
,
374
, pp.
534
543
. 10.1016/j.powtec.2020.06.051
6.
Vera
,
I.
, and
Langlois
,
L.
,
2007
, “
Energy Indicators for Sustainable Development
,”
Energy
,
32
(
6
), pp.
875
882
. 10.1016/j.energy.2006.08.006
7.
Singh
,
P.
,
Kalita
,
P.
,
Mahanta
,
P.
, and
Das
,
H. J.
,
2021
, “Study of Granular Food Material Drying in a Pilot-Scale Rotating Fluidized Bed with Static Geometry Dryer,”
Recent Advances in Mechanical Engineering
,
K.
Pandey
,
R.
Misra
,
P.
Patowari
, and
U.
Dixit
, eds.,
Lecture Notes in Mechanical Engineering
,
Springer
,
Singapore
, pp.
555
562
.
8.
Sahin
,
A.
, and
Dincer
,
I.
,
2002
, “
Graphical Determination of Drying Process and Moisture Transfer Parameters for Solids Drying
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3267
3273
. 10.1016/S0017-9310(02)00057-1
9.
Aghbashlo
,
M.
,
Kianmehr
,
M. H.
, and
Arabhosseini
,
A.
,
2009
, “
Performance Analysis of Drying of Carrot Slices in a Semi-Industrial Continuous Band Dryer
,”
J. Food Eng.
,
91
(
1
), pp.
99
108
. 10.1016/j.jfoodeng.2008.08.020
10.
Stakić
,
M.
,
Stefanović
,
P.
,
Cvetinović
,
D.
, and
Škobalj
,
P.
,
2013
, “
Convective Drying of Particulate Solids—Packed vs. Fluid Bed Operation
,”
Int. J. Heat Mass Transfer
,
59
, pp.
66
74
. 10.1016/j.ijheatmasstransfer.2012.11.078
11.
Chowdhury
,
M. M. I.
,
Bala
,
B. K.
, and
Haque
,
M. A.
,
2011
, “
Energy and Exergy Analysis of the Solar Drying of Jackfruit Leather
,”
Biosyst. Eng.
,
110
(
2
), pp.
222
229
. 10.1016/j.biosystemseng.2011.08.011
12.
Abdul-Manan
,
A. F. N.
,
Baharuddin
,
A.
, and
Chang
,
L. W.
,
2014
, “
A Detailed Survey of the Palm and Biodiesel Industry Landscape in Malaysia
,”
Energy
,
76
, pp.
931
941
. 10.1016/j.energy.2014.09.007
13.
Sarker
,
M. S. H.
,
Ibrahim
,
M. N.
,
Abdul Aziz
,
N.
, and
Punan
,
M. S.
,
2015
, “
Energy and Exergy Analysis of Industrial Fluidized Bed Drying of Paddy
,”
Energy
,
84
, pp.
131
138
. 10.1016/j.energy.2015.02.064
14.
Dincer
,
I.
, and
Cengel
,
Y.
,
2001
, “
Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering
,”
Entropy
,
3
(
3
), pp.
116
149
. 10.3390/e3030116
15.
Midilli
,
A.
, and
Kucuk
,
H.
,
2003
, “
Mathematical Modeling of Thin Layer Drying of Pistachio by Using Solar Energy
,”
Energy Convers. Manage.
,
44
(
7
), pp.
1111
1122
. 10.1016/S0196-8904(02)00099-7
16.
Liu
,
W.
,
Liu
,
P.
,
Wang
,
J. B.
,
Zheng
,
N. B.
, and
Liu
,
Z. C.
,
2018
, “
Exergy Destruction Minimization: A Principle to Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
122
, pp.
11
21
. 10.1016/j.ijheatmasstransfer.2018.01.048
17.
Wang
,
J.
,
Liu
,
Z.
,
Yuan
,
F.
,
Liu
,
W.
, and
Chen
,
G.
,
2015
, “
Convective Heat Transfer Optimization in a Circular Tube Based on Local Exergy Destruction Minimization
,”
Int. J. Heat Mass Transfer
,
90
, pp.
49
57
. 10.1016/j.ijheatmasstransfer.2015.06.031
18.
Akpinar
,
E. K.
,
2004
, “
Energy and Exergy Analyses of Drying of Red Pepper Slices in a Convective Type Dryer
,”
Int. Commun. Heat Mass Transfer
,
31
(
8
), pp.
1165
1176
. 10.1016/j.icheatmasstransfer.2004.08.014
19.
Kavak Akpinar
,
E.
,
Midilli
,
A.
, and
Bicer
,
Y.
,
2005
, “
Energy and Exergy of Potato Drying Process via Cyclone Type Dryer
,”
Energy Convers. Manage.
,
46
(
15–16
), pp.
2530
2552
. 10.1016/j.enconman.2004.12.008
20.
Dincer
,
I.
, and
Sahin
,
A. Z.
,
2004
, “
A New Model for Thermodynamic Analysis of a Drying Process
,”
Int. J. Heat Mass Transfer
,
47
(
4
), pp.
645
652
. 10.1016/j.ijheatmasstransfer.2003.08.013
21.
Midilli
,
A.
, and
Kucuk
,
H.
,
2003
, “
Energy and Exergy Analyses of Solar Drying Process of Pistachio
,”
Energy
,
28
(
6
), pp.
539
556
. 10.1016/S0360-5442(02)00158-5
22.
Yu
,
X.-L.
,
Zielinska
,
M.
,
Ju
,
H.-Y.
,
Mujumdar
,
A. S.
,
Duan
,
X.
,
Gao
,
Z.-J.
, and
Xiao
,
H.-W.
,
2020
, “
Multistage Relative Humidity Control Strategy Enhances Energy and Exergy Efficiency of Convective Drying of Carrot Cubes
,”
Int. J. Heat Mass Transfer
,
149
, p.
119231
. 10.1016/j.ijheatmasstransfer.2019.119231
23.
Syahrul
,
S.
,
Hamdullahpur
,
F.
, and
Dincer
,
I.
,
2002
, “
Exergy Analysis of Fluidized Bed Drying of Moist Particles
,”
Exergy An Int. J.
,
2
(
2
), pp.
87
98
. 10.1016/S1164-0235(01)00044-9
24.
Aghbashlo
,
M.
,
Kianmehr
,
M. H.
, and
Arabhosseini
,
A.
,
2008
, “
Energy and Exergy Analyses of Thin-Layer Drying of Potato Slices in a Semi-Industrial Continuous Band Dryer
,”
Dry. Technol.
,
26
(
12
), pp.
1501
1508
. 10.1080/07373930802412231
25.
Celma
,
A. R.
, and
Cuadros
,
F.
,
2009
, “
Energy and Exergy Analyses of OMW Solar Drying Process
,”
Renewable Energy
,
34
(
3
), pp.
660
666
. 10.1016/j.renene.2008.05.019
26.
Fudholi
,
A.
,
Othman
,
M. Y.
,
Ruslan
,
M. H.
, and
Sopian
,
K.
,
2013
, “
Drying of Malaysian Capsicum annuum L. (Red Chili) Dried by Open and Solar Drying
,”
Int. J. Photoenergy
,
2013
, pp.
1
9
. 10.1155/2013/167895
27.
Nazghelichi
,
T.
,
Aghbashlo
,
M.
,
Kianmehr
,
M. H.
, and
Omid
,
M.
,
2011
, “
Prediction of Energy and Exergy of Carrot Cubes in a Fluidized Bed Dryer by Artificial Neural Networks
,”
Dry. Technol.
,
29
(
3
), pp.
295
307
. 10.1080/07373937.2010.494237
28.
Białobrzewski
,
I.
,
Zielińska
,
M.
,
Mujumdar
,
A. S.
, and
Markowski
,
M.
,
2008
, “
Heat and Mass Transfer During Drying of a Bed of Shrinking Particles—Simulation for Carrot Cubes Dried in a Spout-Fluidized-Bed Drier
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4704
4716
. 10.1016/j.ijheatmasstransfer.2008.02.031
29.
Das
,
H. J.
,
Mahanta
,
P.
, and
Saikia
,
R.
,
2020
, “A Future Trend on Research Scope of Numerical Simulation on Conical Fluidized Bed,”
Development and Trends in Industrial and Materials Engineering
,
P.
Sahoo
, ed.,
IGI Global
,
USA
, pp.
401
437
.
30.
Saikia
,
R.
,
Mahanta
,
P.
, and
Das
,
H. J.
,
2021
, “
Heat Recovery From the Downcomer of a Pressurized Circulating Fluidized Bed During Various Transient Conditions
,”
Heat Mass Transfer
,
57
(
1
), pp.
53
61
. 10.1007/s00231-020-02945-3
31.
Das
,
H. J.
,
Saikia
,
R.
, and
Mahanta
,
P.
,
2021
, “A Comparative Study on the Hydrodynamic and Heat Transfer Behaviour of Conical Fluidized Bed With That of a Columnar Pressurized Circulating Fluidized Bed,”
Recent Advances in Mechanical Engineering
,
K.
Pandey
,
R.
Misra
,
P.
Patowari
, and
U.
Dixit
, eds.,
Lecture Notes in Mechanical Engineering
,
Springer
,
Singapore
, pp.
531
543
.
32.
Akpinar
,
E. K.
,
Midilli
,
A.
, and
Bicer
,
Y.
,
2006
, “
The First and Second Law Analyses of Thermodynamic of Pumpkin Drying Process
,”
J. Food Eng.
,
72
(
4
), pp.
320
331
. 10.1016/j.jfoodeng.2004.12.011
33.
Nazghelichi
,
T.
,
Kianmehr
,
M. H.
, and
Aghbashlo
,
M.
,
2010
, “
Thermodynamic Analysis of Fluidized Bed Drying of Carrot Cubes
,”
Energy
,
35
(
12
), pp.
4679
4684
. 10.1016/j.energy.2010.09.036
34.
Corzo
,
O.
,
Bracho
,
N.
,
Vásquez
,
A.
, and
Pereira
,
A.
,
2008
, “
Energy and Exergy Analyses of Thin Layer Drying of Coroba Slices
,”
J. Food Eng.
,
86
(
2
), pp.
151
161
. 10.1016/j.jfoodeng.2007.05.008
35.
Akbulut
,
A.
, and
Durmuş
,
A.
,
2010
, “
Energy and Exergy Analyses of Thin Layer Drying of Mulberry in a Forced Solar Dryer
,”
Energy
,
35
(
4
), pp.
1754
1763
. 10.1016/j.energy.2009.12.028
36.
Darvishi
,
H.
,
Azadbakht
,
M.
, and
Noralahi
,
B.
,
2018
, “
Experimental Performance of Mushroom Fluidized-Bed Drying: Effect of Osmotic Pretreatment and Air Recirculation
,”
Renewable Energy
,
120
, pp.
201
208
. 10.1016/j.renene.2017.12.068
37.
Devani
,
Y.
, and
Yelamarthi
,
P. S.
,
2019
, “
Energetic and Exergetic Analyses of Barnyard Millet Drying Using Continuous Multistage Fluidized Bed Dryer
,”
J. Food Process Eng.
,
42
(
7
). 10.1111/jfpe.13247
38.
Pattanayak
,
B.
,
Mohapatra
,
S. S.
, and
Das
,
H. C.
,
2019
, “
Energy and Exergy Analyses of Paddy Drying Process in a Vertical Fluidised Bed Dryer
,”
Int. J. Exergy
,
28
(
2
), p.
113
. 10.1504/IJEX.2019.097975
39.
Hancioglu
,
E.
,
Hepbasli
,
A.
,
Icier
,
F.
,
Erbay
,
Z.
, and
Colak
,
N.
,
2010
, “
Performance Investigation of the Drying of Parsley in a Tray Dryer System
,”
Int. J. Exergy
,
7
(
2
), p.
193
. 10.1504/IJEX.2010.031240
40.
Özbey
,
M.
, and
Söylemez
,
M. S.
,
2005
, “
Effect of Swirling Flow on Fluidized Bed Drying of Wheat Grains
,”
Energy Convers. Manage.
,
46
(
9–10
), pp.
1495
1512
. 10.1016/j.enconman.2004.08.005
41.
Prasertsan
,
S.
, and
Saen-saby
,
P.
,
1998
, “
Heat Pump Drying of Agricultural Materials
,”
Dry. Technol.
,
16
(
1–2
), pp.
235
250
. 10.1080/07373939808917401
42.
Chua
,
K. J.
,
Chou
,
S. K.
,
Ho
,
J. C.
, and
Hawlader
,
M. N. A.
,
2002
, “
Heat Pump Drying: Recent Developments and Future Trends
,”
Dry. Technol.
,
20
(
8
), pp.
1579
1610
. 10.1081/DRT-120014053
You do not currently have access to this content.