Abstract

Bio-oil produced from waste biomass by various thermochemical approaches possess several drawbacks primarily due to the presence of oxygenated compounds. These compounds render bio-oil difficult to be used as normal fuel for combustion. Thus, bio-oil must be processed to remove oxygenated compounds from it. One important process found suitable to deoxygenate bio-oil is the catalytic hydrodeoxygenation (HDO) using an appropriate catalyst. In literature, limited studies exist on the application of computational fluid dynamics (CFD) on hydrodeoxygenation of bio-oil model compounds. Therefore, authors utilized the computational fluid dynamics framework to delineate effect of process variables on the catalytic hydrodeoxygenation of 2-hydroxybenzaldehyde (2-HB) which is a bio-oil model compound in this study. The range of conditions considered herein are weight hourly space velocity (WHSV) = 1 h−1, 3 h−1, and 5 h−1; superficial hydrogen gas velocity, u = 0.075 m/s, 0.15 m/s, and 0.25 m/s; Pd/Al2O3 catalyst load = 0.06 kg and temperature, T = 498 K, 598 K, and 698 K. The present solution approach has also been applied to reproduce literature results on hydrodynamics of multiphase fluidized bed systems for comparison purpose. The hydrodynamics inside the fluidized bed reactor have been compared with and without HDO of 2-HB. The HDO of 2-HB yield phenol as the most dominant constitute of the products. Other products include benzene and benzaldehyde but in less fractions. Disclosing a few important results one can find that at constant low temperature (498 K), by increasing the values of WHSV the phenol fraction decreases, whereas those of benzene and benzaldehyde increases when u = 0.25 m/s. This effect becomes more rigorous at high constant temperature (698 K) especially in the case of phenol and benzene fractions. Moreover, most of the conversion of 2-HB and formation of products (phenol, benzene, and benzaldehyde) occurs within 2 s of fluidization time.

References

1.
Liu
,
C.
,
Wang
,
H.
,
Karim
,
A. M.
,
Sun
,
J.
, and
Wang
,
Y.
,
2014
, “
Catalytic Fast Pyrolysis of Lignocellulosic Biomass
,”
Chem. Soc. Rev.
,
43
(
22
), pp.
7594
7623
. 10.1039/C3CS60414D
2.
Bu
,
Q.
,
Lei
,
H.
,
Zacher
,
A. H.
,
Wang
,
L.
,
Ren
,
S.
,
Liang
,
J.
,
Wei
,
Y.
,
Liu
,
Y.
,
Tang
,
J.
,
Zhang
,
Q.
, and
Ruan
,
R.
,
2012
, “
A Review of Catalytic Hydrodeoxygenation of Lignin-Derived Phenols From Biomass Pyrolysis
,”
Bioresour. Technol.
,
124
, pp.
470
477
. 10.1016/j.biortech.2012.08.089
3.
Ancheyta
,
J.
, and
Speight
,
J. G.
,
2007
,
Hydroprocessing of Heavy Oils and Residua
,
CRC Press
,
Boca Raton, FL
.
4.
Xiu
,
S.
, and
Shahbazi
,
A.
,
2012
, “
Bio-Oil Production and Upgrading Research: A Review
,”
Renew. Sustain. Energy Rev.
,
16
(
7
), pp.
4406
4414
. 10.1016/j.rser.2012.04.028
5.
Gollakota
,
A. R. K.
,
Reddy
,
M.
,
Subramanyam
,
M. D.
, and
Kishore
,
N.
,
2016
, “
A Review on the Upgradation Techniques of Pyrolysis Oil
,”
Renew. Sustain. Energy Rev.
,
58
, pp.
1543
1568
. 10.1016/j.rser.2015.12.180
6.
Wang
,
H.
,
Male
,
J.
, and
Wang
,
Y.
,
2013
, “
Recent Advances in Hydrotreating of Pyrolysis Bio-Oil and Its Oxygen-Containing Model Compounds
,”
ACS Catal.
,
3
(
5
), pp.
1047
1070
. 10.1021/cs400069z
7.
Gollakota
,
A. R. K.
,
Subramanyam
,
M. D.
,
Kishore
,
N.
, and
Gu
,
S.
,
2015
, “
CFD Simulations on the Effect of Catalysts on the Hydrodeoxygenation of Bio-Oil
,”
RSC Adv.
,
5
(
52
), pp.
41855
41866
. 10.1039/C5RA02626A
8.
Subramanyam
,
M. D.
,
Gollakota
,
A. R. K.
, and
Kishore
,
N.
,
2015
, “
CFD Simulations of Catalytic Hydrodeoxygenation of Bio-Oil Using Pt/Al2O3 in a Fixed Bed Reactor
,”
RSC Adv.
,
5
(
110
), pp.
90354
90366
. 10.1039/C5RA14985A
9.
Gollakota
,
A. R. K.
, and
Kishore
,
N.
,
2018
, “
Effects of Pt /Al2O3 Catalyst Load on Upgrading of Pyrolytic Bio-Oil by Hydrodeoxygenation in a Fixed Bed Reactor
,”
Petroleum Petrochem. Eng. J.
,
2
(
4
), p.
000158
. 10.23880/ppej-16000158
10.
Sheu
,
Y.-H. E.
,
Anthony
,
R. G.
, and
Soltes
,
E. J.
,
1988
, “
Kinetic Studies of Upgrading Pine Pyrolytic Oil by Hydrotreatment
,”
Fuel Process. Technol.
,
19
(
1
), pp.
31
50
. 10.1016/0378-3820(88)90084-7
11.
Elliott
,
D. C.
, and
Hart
,
T. R.
,
2009
, “
Catalytic Hydroprocessing of Chemical Models for Bio-Oil
,”
Energy Fuels
,
23
(
2
), pp.
631
637
. 10.1021/ef8007773
12.
Bui
,
V. N.
,
Toussaint
,
G.
,
Laurenti
,
D.
,
Mirodatos
,
C.
, and
Geantet
,
C.
,
2009
, “
Co-Processing of Pyrolisis Bio Oils and Gas Oil for New Generation of Bio-Fuels: Hydrodeoxygenation of Guaïacol and SRGO Mixed Feed
,”
Catal. Today
,
143
(
1–2
), pp.
172
178
. 10.1016/j.cattod.2008.11.024
13.
Bykova
,
M. V.
,
Ermakov
,
D. Y.
,
Kaichev
,
V. V.
,
Bulavchenko
,
O. A.
,
Saraev
,
A. A.
,
Lebedev
,
M. Y.
, and
Yakovlev
,
,
2012
, “
Ni-Based Sol–Gel Catalysts as Promising Systems for Crude Bio-Oil Upgrading: Guaiacol Hydrodeoxygenation Study
,”
Appl. Catal. B: Environ.
,
113–114
, pp.
296
307
. 10.1016/j.apcatb.2011.11.051
14.
Popov
,
A.
,
Kondratieva
,
E.
,
Gilson
,
J.-P.
,
Mariey
,
L.
,
Travert
,
A.
, and
Maugé
,
F.
,
2011
, “
IR Study of the Interaction of Phenol With Oxides and Sulfided CoMo Catalysts for Bio-Fuel Hydrodeoxygenation
,”
Catal. Today
,
172
(
1
), pp.
132
135
. 10.1016/j.cattod.2011.02.010
15.
Leng
,
S.
,
Wang
,
X.
,
He
,
X.
,
Liu
,
L.
,
Liu
,
Y.
,
Zhong
,
X.
,
Zhuang
,
G.
, and
Wang
,
J.
,
2013
, “
NiFe/γ-Al2O3: A Universal Catalyst for the Hydrodeoxygenation of Bio-Oil and Its Model Compounds
,”
Catal. Commun.
,
41
, pp.
34
37
. 10.1016/j.catcom.2013.06.037
16.
Xu
,
X.
,
Zhang
,
C.
,
Liu
,
Y.
,
Zhai
,
Y.
, and
Zhang
,
R.
,
2013
, “
Two-Step Catalytic Hydrodeoxygenation of Fast Pyrolysis Oil to Hydrocarbon Liquid Fuels
,”
Chemosphere
,
93
(
4
), pp.
652
660
. 10.1016/j.chemosphere.2013.06.060
17.
Verma
,
A. M.
, and
Kishore
,
N.
,
2017
, “
Molecular Simulations of Palladium Catalysed Hydrodeoxygenation of 2-Hydroxybenzaldehyde Using Density Functional Theory
,”
Phys. Chem. Chem. Phys.
,
19
(
37
), pp.
25582
25597
. 10.1039/C7CP05113A
18.
Zimmermann
,
S.
, and
Taghipour
,
F.
,
2005
, “
CFD Modeling of the Hydrodynamics and Reaction Kinetics of FCC Fluidized-Bed Reactors
,”
Ind. Eng. Chem. Res.
,
44
(
26
), pp.
9818
9827
. 10.1021/ie050490+
19.
Taghipour
,
F.
,
Ellis
,
N.
, and
Wong
,
C.
,
2005
, “
Experimental and Computational Study of Gas–Solid Fluidized Bed Hydrodynamics
,”
Chem. Eng. Sci.
,
60
(
24
), pp.
6857
6867
. 10.1016/j.ces.2005.05.044
20.
Schiller
,
L.
, and
Naumann
,
Z.
,
1935
, “
A Drag Coefficient Correlation
,”
VDI Zeitung
,
77
(
8
), pp.
318
320
.
21.
Gidaspow
,
D.
,
Bezburuah
,
R.
, and
Ding
,
J.
,
1992
, “
Hydrodynamics of Circulating Fluidized Beds: Kinetic Theory Approach
,”
7th Fluidization Conference
, pp.
75
82
.
22.
Wen
,
C. Y.
, and
Yu
,
Y. H.
,
1966
, “
A Generalized Method for Predicting the Minimum Fluidization Velocity
,”
AIChE J.
,
12
(
3
), pp.
610
612
. 10.1002/aic.690120343
23.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
88
95
.
24.
Ranz
,
W. E.
, and
Marshall
,
W.
, Jr.
,
1952
, “
Evaporation From Drops 1
,”
Chem. Eng. Prog.
,
48
(
3–4
), pp.
141
148
.
25.
Gunn
,
D. J.
,
1978
, “
Transfer of Heat or Mass to Particles in Fixed and Fluidised Beds
,”
Int. J. Heat Mass Transf.
,
21
(
4
), pp.
467
476
. 10.1016/0017-9310(78)90080-7
26.
Lun
,
C. K. K.
,
Savage
,
S. B.
,
Jeffrey
,
D. J.
, and
Chepurniy
,
N.
,
1984
, “
Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield
,”
J. Fluid Mech.
,
140
, pp.
223
256
. 10.1017/S0022112084000586
27.
Ding
,
J.
, and
Gidaspow
,
D.
,
1990
, “
A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow
,”
AIChE J.
,
36
(
4
), pp.
523
538
. 10.1002/aic.690360404
28.
Syamlal
,
M.
, and
O’Brien
,
T. J.
,
1988
, “
Simulation of Granular Layer Inversion in Liquid Fluidized Beds
,”
Int. J. Multiphase Flow
,
14
(
4
), pp.
473
481
. 10.1016/0301-9322(88)90023-7
You do not currently have access to this content.