Abstract

This paper presents the effect of brick and kiln wall roughness on the fluid flow, pressure drop, and convection and radiation heat transfer in tunnel kilns. The surface roughness of 0–4 mm is investigated for bricks and tunnel boundary. Another wall roughness of 10 mm is considered to explore the effect of significant defects in the tunnel boundary. The study is conducted using a three-dimensional computational fluid dynamics (CFD) model based on the finite volume method with the k – ω turbulence model. The convective heat transfer coefficients enhance by 45% and 97%, and the pressure drop increases by 25.1% and 80.4% as the brick roughness is increased from 0 to 1 mm and 0 to 4 mm, respectively. The ratio of heat transfer rate to pumping power reaches its maximum at a brick roughness of 2 mm. These results provide essential knowledge about the acceptable range of brick roughness for manufacturers. As the tunnel boundary roughness is increased from 0 to 1 and 0 to 10 mm, the heat transfer rates increase by 1.34% and 3.88%, while the pressure drops increase by 7.5% and 18.2%, respectively. These results are supportive of scheduling the maintenance of tunnel kilns’ interior structure. Moreover, the enhancement of the radiation heat transfer depends on the brick emissivity and the area ratio of rough to smooth surfaces.

References

1.
Fiala
,
J.
,
Mikolas
,
M.
, and
Krejsova
,
K.
,
2019
, “
Full Brick, History and Future
,”
IOP Conf. Ser. Earth Environ. Sci.
,
221
, p.
012139
. 10.1088/1755-1315/221/1/012139
2.
Grifa
,
C.
,
Germinario
,
C.
,
De Bonis
,
A.
,
Mercurio
,
M.
,
Izzo
,
F.
,
Pepe
,
F.
,
Bareschino
,
P.
,
Cucciniello
,
C.
,
Monettic
,
V.
,
Morra
,
V.
,
Cappelletti
,
P.
,
Cultrone
,
G.
, and
Langella
,
A.
,
2017
, “
Traditional Brick Productions in Madagascar: From Raw Material Processing to Firing Technology
,”
Appl. Clay Sci.
,
150
, pp.
252
266
. 10.1016/j.clay.2017.09.033
3.
Akinshipe
,
O.
, and
Kornelius
,
G.
,
2017
, “
Chemical and Thermodynamic Processes in Clay Brick Firing Technologies and Associated Atmospheric Emissions Metrics—A Review
,”
J. Pollut. Eff. Control
,
5
(
2
), p.
1000190
. 10.4172/2375-4397.1000190
4.
Rentz
,
O.
,
Schmittinger
,
F.
,
Jochum
,
R.
, and
Schultmann
,
F.
,
2001
, “
Exemplary Investigation into the State of Practical Realisation of Integrated Environmental Protection Within the Ceramics Industry Under Observance of the IPPC-Directive and the Development of BAT Reference Documents
,” Environmental Research Plan of the Federal Minister for the Environment, Nature Conservation and Safety, Research Project 298 94 313/07.
5.
Pariyar
,
S. K.
, and
Ferdous
,
T. D.
,
2013
, “
Environment and Health Impact for Brick Kilns in Kathmandu Valley
,”
Int. J. Sci. Technol. Res.
,
2
(
5
), pp.
184
187
.
6.
Oti
,
J.
, and
Kinuthia
,
J.
,
2012
, “
Stabilised Unfired Clay Bricks for Environmental and Sustainable Use
,”
Appl. Clay Sci.
,
58
, pp.
52
59
. j.clay.2012.01.011
7.
Ahmari
,
S.
, and
Zhang
,
L.
,
2012
, “
Production of Eco-Friendly Bricks From Copper Mine Tailings Through Geopolymerization
,”
Constr. Build. Mater.
,
29
, pp.
323
331
. 10.1016/j.conbuildmat.2011.10.048
8.
Vieira
,
C.
,
Sánchez
,
R.
, and
Monteiro
,
S.
,
2008
, “
Characteristics of Clays and Properties of Building Ceramics in the State of Rio de Janeiro, Brazil
,”
Constr. Build. Mater.
,
25
(
5
), pp.
781
787
. 10.1016/j.conbuildmat.2007.01.006
9.
Adyel
,
T.
,
Rahman
,
S.
,
Islam
,
S.
,
Sayem
,
H.
,
Khan
,
M.
, and
Abdul Gafur
,
M.
,
2012
, “
Characterization of Brick Making Soil: Geo-Engineering, Elemental and Thermal Aspects
,”
Jahangirnagar Univ. J. Biol. Sci.
,
35
(
1
), pp.
109
118
.
10.
Wang
,
L.
,
Sun
,
H.
,
Sun
,
Z.
, and
Ma
,
E.
,
2016
, “
New Technology and Application of Brick Making With Coal Fly Ash
,”
J. Mater. Cycles Waste Manage.
,
18
, pp.
763
770
. 10.1007/s10163-015-0368-9
11.
Wang
,
P.
, and
Liu
,
D.
,
2013
, “
Preparation of Baking-Free Brick From Manganese Residue and Its Mechanical Properties
,”
J. Nanomater.
,
2013
, p.
452854
.
12.
Callister
,
W.
, Jr.
,
2007
,
Materials Science and Engineering an Introduction
, 7th ed.,
John Wiley and Sons, Inc.
,
New York
.
13.
Callister
,
W.
, Jr.
, and
Rethwisch
,
D.
,
2008
,
Fundamentals of Materials Science and Engineering: An Integrated Approach
, 3rd ed.,
John Wiley and Sons, Inc.
,
New York
.
14.
Brosnan
,
D. A.
, and
Robinson
,
G. C.
,
2003
,
Introduction to Drying of Ceramics
,
The American Ceramic Society
,
Westerville, OH
.
15.
Campbell
,
J.
, and
Pryce
,
W.
,
2003
,
Brick, A World History
,
Thames and Hudson
,
New York, NY
.
16.
da Silva Almeida
,
G.
,
da Silva
,
J. B.
,
e Silva
,
C. J.
,
Swarnakar
,
R.
,
de Araújo Neves
,
G.
, and
de Lima
,
A. G.
,
2013
, “
Heat and Mass Transport in an Industrial Tunnel Dryer: Modeling and Simulation Applied to Hollow Bricks
,”
Appl. Therm. Eng.
,
55
(
1–2
), pp.
78
86
. 10.1016/j.applthermaleng.2013.02.042
17.
Kaya
,
S.
,
Küçükada
,
K.
, and
Mançuhan
,
E.
,
2008
, “
Model-Based Optimization of Heat Recovery in the Cooling Zone of a Tunnel Kiln
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
633
641
. 10.1016/j.applthermaleng.2007.04.002
18.
German Federal Environmental Agency
,
2007
,
The Best Available Techniques in the Ceramic Industry [Merkblatt Uber die Besten Verfugbaren Techniken in der Keramikindustrie, Umweltbundesamt, (2007) in German]
,
Environmental Protection Agency
,
Wexford
.
19.
Vogt
,
S.
, and
Beckmann
,
M.
,
2008
, “
Convective Heat Transfer on Brick Settings
,”
Ziegelind. Int.
,
60
(
9
), pp.
34
49
.
20.
Meng
,
P.
,
2011
, “
Solid–Solid Recuperation to Improve the Energy Efficiency of Tunnel Kilns
,”
Ph. D. dissertation
,
Otto-von-Guericke-University
,
Magdeburg
.
21.
Tehzeeb
,
A. H.
,
Bhuiyan
,
M.
, and
Jayasuriya
,
N.
,
2012
, “
Evaluation of Brick Kiln Performances Using Computational Fluid Dynamics (CFD)
,”
Energy Environ. Eng. J.
,
1
(
2
), pp.
86
93
.
22.
Shakti Sustainable Energy Foundation
,
2012
, “
Brick Kilns Performance Assessment—A Roadmap for Cleaner Brick Production in India
,”
Shakti Sustainable Energy Foundation, New Delhi
, https://www.ccacoalition.org/en/resources/brick-kilns-performance-assessment-roadmap-cleaner-brick-productionindia
23.
Nicolau
,
V.
, and
Dadam
,
A. P.
,
2009
, “
Numerical and Experimental Thermal Analysis of a Tunnel Kiln Used in Ceramic Production
,”
J. Braz. Soc. Mech. Sci. Eng.
,
31
(
4
), pp.
297
304
.
24.
Mancuhan
,
E.
,
Kucukada
,
K.
, and
Alpman
,
E.
,
2011
, “
Mathematical Modeling and Simulation of the Preheating Zone of a Tunnel Kiln
,”
J. Therm. Sci. Technol.
,
31
(
2
), pp.
79
86
.
25.
Refaey
,
H. A.
,
Specht
,
E.
, and
Salem
,
M. R.
,
2015
, “
Influence of Fuel Distribution and Heat Transfer on Energy Consumption in Tunnel Kilns
,”
Int. J. Adv. Eng. Technol.
,
8
(
3
), pp.
281
293
.
26.
Mancuhan
,
E.
, and
Kucukada
,
K.
,
2006
, “
Optimization of Fuel and Air Use in a Tunnel Kiln to Produce Coal Admixed Bricks
,”
Appl. Therm. Eng.
,
26
(
14–15
), pp.
1556
1563
.
27.
Almutairi
,
J.
,
Alrahmani
,
M.
,
Almesri
,
I.
, and
Abou-Ziyan
,
H.
,
2017
, “
Effect of Fluid Channels on Flow Uniformity in Complex Geometry Similar to Lattice Brick Setting in Tunnel Kilns
,”
Int. J. Mech. Sci.
,
134C
, pp.
28
40
. 10.1016/j.ijmecsci.2017.10.001
28.
Abou-Ziyan
,
H. Z.
,
2004
, “
Convective Heat Transfer From Different Brick Arrangements in Tunnel Kilns
,”
Appl. Therm. Eng.
,
24
(
2–3
), pp.
171
191
. 10.1016/j.applthermaleng.2003.08.014
29.
Abou-Ziyan
,
H.
,
Almesri
,
I.
,
Alrahmani
,
M.
, and
Almutairi
,
J.
,
2018
, “
Convective Heat Transfer Coefficients of Multifaceted Longitudinal and Transversal Bricks of Lattice Setting in Tunnel Kilns
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051014
.
30.
Abou-Ziyan
,
H.
,
Alrahmani
,
M.
,
Almesri
,
I.
, and
Almutairi
,
J.
,
2018
, “
Enhancement of Fluid Flow and Heat Transfer in Tunnel Kilns
,”
Int. J. Mech. Prod. Eng.
,
6
(
6
), pp.
63
69
.
31.
Dugwell
,
D. R.
, and
Oakley
,
D. E.
,
1989
, “
Correlation of Convective Heat Transfer Data for Tunnel Kilns
,”
Ziegelind. Int.
,
42
(
10
), pp.
536
545
.
32.
Dugwell
,
D. R.
, and
Oakley
,
D. E.
,
1988
, “
A Model of Heat Transfer in Tunnel Kilns Used for Firing Refractories
,”
Int. J. Heat Mass Transfer
,
31
(
11
), pp.
2381
2390
.
33.
Refaey
,
H. A.
,
Abdel-Aziz
,
A. A.
,
Ali
,
R. K.
,
Abdelrahman
,
H. E.
, and
Salem
,
M. R.
,
2017
, “
Augmentation of Convective Heat Transfer in the Cooling Zone of Brick Tunnel Kiln Using Guide Vanes: An Experimental Study
,”
Int. J. Therm. Sci.
,
122
, pp.
172
185
.
34.
Alrahmani
,
M. A.
,
Almesri
,
I. F.
,
Abou-Ziyan
,
H. Z.
, and
Almutairi
,
J. H.
,
2020
, “
Effect of Lattice Setting Density on Fluid Flow and Convective Heat Transfer Characteristics of Bricks in Tunnel Kilns
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
5
), p.
051016
. 10.1115/1.4046420
35.
Shular
,
J.
,
1996
, “
The Emission Factor Documentation for AP-42, Section 11.7
,”
Ceramic Products Manufacturing for U.S.
36.
Karaush
,
S. A.
,
Chizhik
,
Y. I.
, and
Bober
,
E. G.
,
1997
, “
Optimization of Ceramic Setting as a Function of Their Heat Absorption From the Radiating Walls of the Furnace
,”
Glass Ceram.
,
54
(
5–6
), pp.
190
192
.
37.
ANSYS
,
2017
,
ANSYS Fluent Theory Guide
, V 18.2,
ANSYS, Inc.
,
Canonsburg, PA
.
38.
Wen
,
C.
, and
Mudawar
,
I.
,
2006
, “
Modeling the Effects of Surface Roughness on the Emissivity of Aluminum Alloys
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4279
4289
. 10.1016/j.ijheatmasstransfer.2006.04.037
39.
Zhang
,
C.
,
Chen
,
Y.
, and
Shi
,
M.
,
2010
, “
Effects of Roughness Elements on Laminar Flow and Heat Transfer in Microchannels
,”
Chem. Eng. Process.
,
49
(
11
), pp.
1188
1192
. 10.1016/j.cep.2010.08.022
You do not currently have access to this content.