Abstract

In the present study, experimental studies have been performed to compare the thermal performance of two geometrically identical box type solar (B-T-S) cookers. To carry out this aim, the thermal performance of BTS cooker in terms of figure of merits, namely, first figure of merit (F1) and second figure of merit (F2) are calculated for both cookers as specified by the Bureau of Indian Standards (BIS). At no-load condition (i.e., stagnation test), it is found that first figure of merit for both cookers that is cooker 1 and cooker 2 is around 0.12. This implies that both the cookers are identical in thermal performance. In addition to this, the effect of lugs height, reflector, number of pots, and load on B-T-S cooker performance have also been investigated. From the results and discussion, it is concluded that the use of lugs reduced the heat transfer rate between cooking pot and absorber plate. Further, it is found that the pot content temperature is enhanced by 25.5% and 23.4% by using mirror and aluminum reflector with cooker, respectively. However, it is observed that the performance parameters of B-T-S cooker in terms of F2 increases linearly with the increase of number of cooking pot (with correlation F2 = 0.0316n + 0.2238, where n is the number of pots) and load (correlation as F2 = 0.0451 m + 0.1844, where m is the mass of water in cooking pot) on the pot.

References

1.
Wong
,
K. V.
,
2016
, “
Sustainable Engineering in the Global Energy Sector
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
024701
. 10.1115/1.4031783
2.
Rabl
,
A.
, and
Spadaro
,
J. V.
,
2016
, “
External Costs of Energy: How Much is Clean Energy Worth?
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
040801
. 10.1115/1.4033596
3.
Elavarasan
,
R. M.
,
2020
, “
Comprehensive Review on India’s Growth in Renewable Energy Technologies in Comparison With Other Prominent Renewable Energy Based Countries
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
030801
. 10.1115/1.4045584
4.
Tareq Chowdhury
,
M.
, and
Mokheimer
,
E. M. A.
,
2020
, “
Recent Developments in Solar and Low-Temperature Heat Sources Assisted Power and Cooling Systems: A Design Perspective
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
040801
. 10.1115/1.4044562
5.
Meraj
,
M.
,
Khan
,
M. E.
, and
Azhar
,
M.
,
2020
, “
Performance Analyses of Photovoltaic Thermal Integrated Concentrator Collector Combined With Single Effect Absorption Cooling Cycle: Constant Flow Rate Mode
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), pp.
1
28
. 10.1115/1.4047407
6.
Meraj
,
M.
,
Mahmood
,
S. M.
,
Khan
,
M. E.
,
Azhar
,
M.
, and
Tiwari
,
G. N.
,
2021
, “
Effect of N-Photovoltaic Thermal Integrated Parabolic Concentrator on Milk Temperature for Pasteurization: A Simulation Study
,”
Renew. Energy
,
163
, pp.
2153
2164
. 10.1016/j.renene.2020.10.103
7.
Sharma
,
S. D.
,
Buddhi
,
D.
,
Sawhney
,
R. L.
, and
Sharma
,
A.
,
2000
, “
Design, Development and Performance Evaluation of a Latent Heat Storage Unit for Evening Cooking in a Solar Cooker
,”
Energy Convers. Manage.
,
41
(
14
), pp.
1497
1508
. 10.1016/S0196-8904(99)00193-4
8.
Coccia
,
G.
,
Di Nicola
,
G.
,
Tomassetti
,
S.
,
Pierantozzi
,
M.
,
Chieruzzi
,
M.
, and
Torre
,
L.
,
2018
, “
Experimental Validation of a High-Temperature Solar Box Cooker with a Solar-Salt-Based Thermal Storage Unit
,”
Sol. Energy
,
170
, pp.
1016
1025
. 10.1016/j.solener.2018.06.021
9.
Coccia
,
G.
,
Aquilanti
,
A.
,
Tomassetti
,
S.
,
Comodi
,
G.
, and
Di Nicola
,
G.
,
2020
, “
Design, Realization, and Tests of a Portable Solar Box Cooker Coupled With an Erythritol-Based PCM Thermal Energy Storage
,”
Sol. Energy
,
201
, pp.
530
540
. 10.1016/j.solener.2020.03.031
10.
Tariq
,
S. L.
,
Ali
,
H. M.
,
Akram
,
M. A.
,
Janjua
,
M. M.
, and
Ahmadlouydarab
,
M.
,
2020
, “
Nanoparticles Enhanced Phase Change Materials (NePCMs)-A Recent Review
,”
Appl. Therm. Eng.
,
176
, p.
115305
. 10.1016/j.applthermaleng.2020.115305
11.
Ahmadi
,
A. A.
,
Arabbeiki
,
M.
,
Ali
,
H. M.
,
Goodarzi
,
M.
, and
Safaei
,
M. R.
,
2020
, “
Configuration and Optimization of a Minichannel Using Water–Alumina Nanofluid by Non-Dominated Sorting Genetic Algorithm and Response Surface Method
,”
Nanomaterials
,
10
(
5
), pp.
1
20
. 10.3390/nano10050901
12.
Muneeshwaran
,
M.
,
Sajjad
,
U.
,
Ahmed
,
T.
,
Amer
,
M.
,
Ali
,
H. M.
, and
Wang
,
C. C.
,
2020
, “
Performance Improvement of Photovoltaic Modules via Temperature Homogeneity Improvement
,”
Energy
,
203
, p.
117816
. 10.1016/j.energy.2020.117816
13.
Ali
,
H. M.
,
2020
, “
In Tube Convection Heat Transfer Enhancement: SiO2 Aqua Based Nanofluids
,”
J. Mol. Liq.
,
308
, p.
113031
. 10.1016/j.molliq.2020.113031
14.
Grimsby
,
L. K.
,
Rajabu
,
H. M.
, and
Treiber
,
M. U.
,
2016
, “
Multiple Biomass Fuels and Improved Cook Stoves From Tanzania Assessed With the Water Boiling Test
,”
Sustain. Energy Technol. Assessments
,
14
, pp.
63
73
. 10.1016/j.seta.2016.01.004
15.
Panwar
,
N. L.
,
2013
, “
Thermal Modeling, Energy and Exergy Analysis of Animal Feed Solar Cooker
,”
J. Renew. Sustain. Energy
,
5
(
4
), p.
043105
. 10.1063/1.4812648
16.
Zafar
,
H. A.
,
Badar
,
A. W.
,
Butt
,
F. S.
,
Khan
,
M. Y.
, and
Siddiqui
,
M. S.
,
2019
, “
Numerical Modeling and Parametric Study of an Innovative Solar Oven
,”
Sol. Energy
,
187
, pp.
411
426
. 10.1016/j.solener.2019.05.064
17.
Barbieri
,
J.
,
Riva
,
F.
, and
Colombo
,
E.
,
2017
, “
Cooking in Refugee Camps and Informal Settlements: A Review of Available Technologies and Impacts on the Socio-Economic and Environmental Perspective
,”
Sustain. Energy Technol. Assessments
,
22
, pp.
194
207
. 10.1016/j.seta.2017.02.007
18.
World Health Organization (WHO)
,
2006
, “
Fuel for Life
,”
WHO
,
Geneva
, pp.
1
42
.
19.
Shahrukh Anis
,
M.
,
Jamil
,
B.
,
Azeem Ansari
,
M.
, and
Bellos
,
E.
,
2019
, “
Generalized Models for Estimation of Global Solar Radiation Based on Sunshine Duration and Detailed Comparison With the Existing: A Case Study for India
,”
Sustain. Energy Technol. Assessments
,
31
, pp.
179
198
. 10.1016/j.seta.2018.12.009
20.
Mohanty
,
S.
,
Patra
,
P. K.
,
Sahoo
,
S. S.
, and
Mohanty
,
A.
,
2017
, “
Forecasting of Solar Energy With Application for a Growing Economy Like India: Survey and Implication
,”
Renew. Sustain. Energy Rev.
,
78
, pp.
539
553
. 10.1016/j.rser.2017.04.107
21.
Mbodji
,
N.
, and
Hajji
,
A.
,
2016
, “
Performance Testing of a Parabolic Solar Concentrator for Solar Cooking
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
041009
. 10.1115/1.4033501
22.
Pandey
,
S.
,
Singh
,
V. S.
,
Gangwar
,
N. P.
,
Vijayvergia
,
M. M.
,
Prakash
,
C.
, and
Pandey
,
D. N.
,
2012
, “
Determinants of Success for Promoting Solar Energy in Rajasthan, India
,”
Renew. Sustain. Energy Rev.
,
16
(
6
), pp.
3593
3598
. 10.1016/j.rser.2012.03.012
23.
Kumar
,
A.
,
Kumar
,
K.
,
Kaushik
,
N.
,
Sharma
,
S.
, and
Mishra
,
S.
,
2010
, “
Renewable Energy in India: Current Status and Future Potentials
,”
Renew. Sustain. Energy Rev.
,
14
(
8
), pp.
2434
2442
. 10.1016/j.rser.2010.04.003
24.
Sharma
,
N. K.
,
Tiwari
,
P. K.
, and
Sood
,
Y. R.
,
2012
, “
Solar Energy in India: Strategies, Policies, Perspectives and Future Potential
,”
Renew. Sustain. Energy Rev.
,
16
(
1
), pp.
933
941
. 10.1016/j.rser.2011.09.014
25.
Yettou
,
F.
,
Azoui
,
B.
,
Malek
,
A.
,
Gama
,
A.
, and
Panwar
,
N. L.
,
2014
, “
Solar Cooker Realizations in Actual Use: An Overview
,”
Renew. Sustain. Energy Rev.
,
37
, pp.
288
306
. 10.1016/j.rser.2014.05.018
26.
Khan
,
B. H.
,
2006
,
Non-Conventional Energy Resources
,
Tata McGraw-Hill Education India Private Limited
,
India
.
27.
Misra
,
R.
, and
Aseri
,
T. K.
,
2012
, “
Thermal Performance Enhancement of Box-Type Solar Cooker: A New Approach
,”
Int. J. Sustain. Energy
,
31
(
2
), pp.
107
118
. 10.1080/1478646X.2011.552978
28.
Cuce
,
E.
, and
Cuce
,
P. M.
,
2013
, “
A Comprehensive Review on Solar Cookers
,”
Appl. Energy
,
102
, pp.
1399
1421
. 10.1016/j.apenergy.2012.09.002
29.
Arunachala
,
U. C.
, and
Kundapur
,
A.
,
2020
, “
Cost-Effective Solar Cookers: A Global Review
,”
Sol. Energy
,
207
, pp.
903
916
. 10.1016/j.solener.2020.07.026
30.
Aramesh
,
M.
,
Ghalebani
,
M.
,
Kasaeian
,
A.
,
Zamani
,
H.
,
Lorenzini
,
G.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2019
, “
A Review of Recent Advances in Solar Cooking Technology
,”
Renew. Energy
,
140
, pp.
419
435
. 10.1016/j.renene.2019.03.021
31.
Gaur
,
A.
,
Singh
,
O. P.
,
Singh
,
S. K.
, and
Pandey
,
G. N.
,
1999
, “
Performance Study of Solar Cooker With Modified Utensil
,”
Renew. Energy
,
18
(
1
), pp.
121
129
. 10.1016/S0960-1481(98)00762-9
32.
Sagade
,
A. A.
,
Samdarshi
,
S. K.
,
Lahkar
,
P. J.
, and
Sagade
,
N. A.
,
2020
, “
Experimental Determination of the Thermal Performance of a Solar Box Cooker With a Modified Cooking Pot
,”
Renew. Energy
,
150
, pp.
1001
1009
. 10.1016/j.renene.2019.11.114
33.
Harmim
,
A.
,
Belhamel
,
M.
,
Boukar
,
M.
, and
Amar
,
M.
,
2010
, “
Experimental Investigation of a Box-Type Solar Cooker With a Finned Absorber Plate
,”
Energy
,
35
(
9
), pp.
3799
3802
. 10.1016/j.energy.2010.05.032
34.
Ekechukwu
,
O. V.
, and
Ugwuoke
,
N. T.
,
2003
, “
Design and Measured Performance of a Plane Reflector Augmented Box-Type Solar-Energy Cooker
,”
Renew. Energy
,
28
(
12
), pp.
1935
1952
. 10.1016/S0960-1481(03)00004-1
35.
Negi
,
B. S.
, and
Purohit
,
I.
,
2005
, “
Experimental Investigation of a Box Type Solar Cooker Employing a Non-Tracking Concentrator
,”
Energy Convers. Manage.
,
46
(
4
), pp.
577
604
. 10.1016/j.enconman.2004.04.005
36.
El-Sebaii
,
A. A.
, and
Ibrahim
,
A.
,
2005
, “
Experimental Testing of a Box-Type Solar Cooker Using the Standard Procedure of Cooking Power
,”
Renew. Energy
,
30
(
12
), pp.
1861
1871
. 10.1016/j.renene.2005.01.007
37.
Purohit
,
I.
, and
Purohit
,
P.
,
2009
, “
Instrumentation Error Analysis of a Box-Type Solar Cooker
,”
Energy Convers. Manage.
,
50
(
2
), pp.
365
375
. 10.1016/j.enconman.2008.09.030
38.
Mahavar
,
S.
,
Rajawat
,
P.
,
Punia
,
R. C.
,
Sengar
,
N.
, and
Dashora
,
P.
,
2015
, “
Evaluating the Optimum Load Range for Box-Type Solar Cookers
,”
Renew. Energy
,
74
, pp.
187
194
. 10.1016/j.renene.2014.08.003
39.
Kahsay
,
M. B.
,
Paintin
,
J.
,
Mustefa
,
A.
,
Haileselassie
,
A.
,
Tesfay
,
M.
, and
Gebray
,
B.
,
2014
, “
Theoretical and Experimental Comparison of Box Solar Cookers With and Without Internal Reflector
,”
Energy Procedia
,
57
, pp.
1613
1622
. 10.1016/j.egypro.2014.10.153
40.
Ghosh
,
S. S.
,
Biswas
,
P. K.
, and
Neogi
,
S.
,
2017
, “
Thermal Performance of Solar Cooker With Special Cover Glass of Low-e Antimony Doped Indium Oxide (IAO) Coating
,”
Appl. Therm. Eng.
,
113
, pp.
103
111
. 10.1016/j.applthermaleng.2016.10.185
41.
Guidara
,
Z.
,
Souissi
,
M.
,
Morgenstern
,
A.
, and
Maalej
,
A.
,
2017
, “
Thermal Performance of a Solar Box Cooker With Outer Reflectors: Numerical Study and Experimental Investigation
,”
Sol. Energy
,
158
, pp.
347
359
. 10.1016/j.solener.2017.09.054
42.
Saxena
,
A.
, and
Agarwal
,
N.
,
2018
, “
Performance Characteristics of a New Hybrid Solar Cooker With Air Duct
,”
Sol. Energy
,
159
, pp.
628
637
. 10.1016/j.solener.2017.11.043
43.
Mullick
,
S. C.
,
Kandpal
,
T. C.
, and
Saxena
,
A. K.
,
1987
, “
Thermal Test Procedure for Box-Type Solar Cookers
,”
Sol. Energy
,
39
(
4
), pp.
353
360
. 10.1016/S0038-092X(87)80021-X
44.
Purohit
,
I.
,
2010
, “
Testing of Solar Cookers and Evaluation of Instrumentation Error
,”
Renew. Energy
,
35
(
9
), pp.
2053
2064
. 10.1016/j.renene.2010.02.006
45.
Mullick
,
S. C.
,
Kandpal
,
T. C.
, and
Kumar
,
S.
,
1996
, “
Testing of Box-Type Solar Cooker: Second Figure of Merit F2 and Its Variation With Load and Number of Pots
,”
Sol. Energy
,
57
(
5
), pp.
409
413
. 10.1016/S0038-092X(96)00116-8
You do not currently have access to this content.