Abstract

The aim of this study is to estimate the relative displacement between the spindle nose and the clamping vice in a rotary transfer machine due to temperature variations. The study was focused on the relative displacements caused by temperature variations produced by two heat sources: the environment around the machine and the three-axis computer numerical control station during the duty cycle. Regarding the last point, an analytical model was developed, in order to account for different thermal sources inside the three-axis module (e.g., ball-screws, rolling bearings, and guideways friction heat, as well as heat generation in the motor). The complete numerical model was calibrated and successfully validated. A comparison was run between numerical results and experimental data in the framework of trials involving a newly developed transfer machine. Finally, the complete model, considering the combination of both the heat sources, has made it possible to estimate spindle nose-clamp relative displacement during a typical working day, highlighting that the radial displacement risks affecting seriously the accuracy of a workpiece.

References

1.
Vilmos
,
V. S.
,
2008
, “
Machine-Tool Settings to Reduce the Sensitivity of Spiral Bevel Gears to Tooth Errors and Misalignments
,”
ASME J. Mech. Des.
,
138
(
8
), p.
082603
. 10.1115/1.2936903
2.
Croccolo
,
D.
,
Cavalli
,
O.
,
De Agostinis
,
M.
,
Fini
,
S.
,
Olmi
,
G.
,
Robusto
,
F.
, and
Vincenzi
,
N.
,
2018
, “
A Methodology for the Lightweight Design of Modern Transfer Machine Tools
,”
Machines
,
6
(
1
), p.
2
. 10.3390/machines6010002
3.
Pegna
,
J.
,
1997
, “
Generalized Abbe Principle: Position Error Propagation in Machine Elements
,”
ASME J. Mech. Des.
,
119
(
1
), pp.
1
7
. 10.1115/1.2828783
4.
Franco
,
P.
,
Estrems
,
M.
, and
Faura
,
F.
,
2008
, “
A Study of Back Cutting Surface Finish From Tool Errors and Machine Tool Deviations During Face Milling
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
112
123
. 10.1016/j.ijmachtools.2007.07.001
5.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
,
2000
, “
Error Compensation in Machine Tools—A Review: Part II: Thermal Errors
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1257
1284
. 10.1016/S0890-6955(00)00010-9
6.
Mao
,
X.
,
Mao
,
K.
,
Wang
,
F.
,
Yan
,
B.
, and
Lei
,
S.
,
2018
, “
A Convective Heat Transfer Coefficient Algorithm for Thermal Analysis of Machine Tools Considering a Temperature Change
,”
Int. J. Adv. Manuf. Technol.
,
99
(
1
), pp.
1877
1889
. 10.1007/s00170-018-2605-6
7.
Lee
,
J. H.
, and
Yang
,
S. H.
,
2002
, “
Statistical Optimization and Assessment of a Thermal Error Model for CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
42
(
1
), pp.
147
155
. 10.1016/S0890-6955(01)00110-9
8.
Kim
,
J. D.
, and
Kim
,
D. S.
,
1997
, “
Development and Application of an Ultra-Precision Lathe
,”
Int. J. Adv. Manuf. Technol.
,
13
(
3
), pp.
164
171
. 10.1007/BF01305868
9.
Tanabe
,
I.
,
Takada
,
K.
, and
Tsutsumi
,
M.
,
1986
, “
Thermal Deformation of Machine Tool Structures Using Epoxy Resin Concrete
,”
Proceedings of the Twenty-Sixth International Machine Tool Design and Research Conference
,
Palgrave, London
, pp.
245
252
.
10.
Kim
,
H. S.
,
Jeong
,
K. S.
, and
Lee
,
D. G.
,
1997
, “
Design and Manufacture of a Three-Axis Ultra-Precision CNC Grinding Machine
,”
J. Mater. Process. Technol.
,
71
(
2
), pp.
258
266
. 10.1016/S0924-0136(97)00084-8
11.
Nishiyama
,
H.
,
Nagayasu
,
O.
,
Shin-Nou
,
T.
,
Sato
,
H.
,
O-Hori
,
M.
, and
Sugishita
,
H.
,
1988
, “
Development of Concrete Machining Centre and Identification of the Dynamic and the Thermal Structural Behaviour
,”
CIRP Ann.—Manuf. Technol.
,
37
(
1
), pp.
377
380
. 10.1016/S0007-8506(07)61658-8
12.
Nymoen
,
H.
,
Benzinger
,
K.
,
Paluncic
,
Z.
,
Hoffmann
,
E.
, and
Spur
,
G.
,
1988
, “
Thermal Behaviour Optimisation of Machine Tools
,”
CIRP Ann.
,
37
(
1
), pp.
401
405
. 10.1016/S0007-8506(07)61664-3
13.
Do Suh
,
J.
, and
Gil Lee
,
D.
,
2004
, “
Thermal Characteristics of Composite Sandwich Structures
,”
Compos. Struct.
,
66
(
1–4
), pp.
429
438
.
14.
Gebhardt
,
M.
,
2014
, “
Thermal Behaviour and Compensation of Rotary Axes in 5-Axis Machine Tools
,”
Ph.D. thesis
,
University of Bayreuth, ETH-Zürich
.
15.
Santos
,
D.
,
Batalha
,
M. O.
,
Bordinassi
,
G. F.
,
and Miori
,
E. C.
, and
F
,
G.
,
2018
, “
Numerical and Experimental Modeling of Thermal Errors in Five-Axis CNC Machining Center
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
1619
1642
. 10.1007/s00170-018-1595-8
16.
Liu
,
K.
,
Li
,
T.
,
Wang
,
Y.
,
Sun
,
M.
,
Wu
,
Y.
, and
Zhu
,
T.
,
2018
, “
Physically Based Modeling Method for Comprehensive Thermally Induced Errors of CNC Machining Centers
,”
Int. J. Adv. Manuf. Technol.
,
94
(
1–4
), pp.
463
474
. 10.1007/s00170-017-0736-9
17.
Bagavathiappan
,
S.
,
Lahiri
,
B. B.
,
Saravanan
,
T.
,
Philip
,
J.
, and
Jayakumar
,
T.
,
2013
, “
Infrared Thermography for Condition Monitoring—A Review
,”
Infrared Phys. Technol.
,
60
(
1
), pp.
35
55
. 10.1016/j.infrared.2013.03.006
18.
Tan
,
F.
,
Yin
,
Q.
,
Dong
,
G.
,
Xie
,
L.
, and
Yin
,
G.
,
2017
, “
An Optimal Convective Heat Transfer Coefficient Calculation Method in Thermal Analysis of Spindle System
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2549
2560
. 10.1007/s00170-016-9924-2
20.
Utica
,
G.
,
2012
, “
Caratterizzazione dell’attrito nelle guide lineari a ricircolo di rulli attraverso prove sperimentali per lo sviluppo della modellazione FEM
,”
Master thesis
,
Politecnico di Milano
,
Milan-Italy
.
21.
Rosa Sistemi
. “
MG Monoguide Recirculating Linear Roller Bearing
,” http://www.rosa-sistemi.it/wp-content/uploads/2016/10/MG-monoguide-recirculating-linear_bassa.pdf, Accessed October 25, 2016.
22.
International Organization for Standardization ISO 15312:2018
,
2018
, “
Rolling Bearings—Thermal Speed Rating—Calculation
,”
Geneva, Switzerland
.
23.
Servomech
. “
Ball Screws and Nuts
,” https://servomech.com/en/products/ball-screws-and-nuts/, Accessed October 6, 2014.
24.
Oyanguren
,
A.
,
Ulacia
,
I.
,
Larranaga
,
J.
,
Gallo
,
A.
,
Arana
,
A.
, and
Gonzalez
,
R.
,
2013
, “
Prediction of Heat Generation and Temperature Distribution in High Speed Preloaded Ball Screws
,”
Key Eng. Mater.
,
572
(
1
), pp.
363
366
. 10.4028/www.scientific.net/KEM.572.363
25.
Siemens
, “
Synchronous Motors SINAMICS S110/S120
,” https://support.industry.siemens.com/cs/products?mfn=ps&lc=en-AE, Accessed November 30, 2011.
26.
O’Hara
,
P.
,
Duarte
,
C. A.
, and
Eason
,
T.
,
2011
, “
Transient Analysis of Sharp Thermal Gradients Using Coarse Finite Element Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
5–8
), pp.
812
829
. 10.1016/j.cma.2010.10.005
You do not currently have access to this content.