Abstract

An Omnimagnet is an electromagnetic device that enables remote magnetic manipulation of devices such as medical implants and microrobots. It is composed of three orthogonal nested solenoids with a ferromagnetic core at the center. Electrical current within the solenoids leads to undesired temperature increase within the Omnimagnet. If the temperature exceeds the melting point of the wire insulation, device failure may occur. Thus, a study of heat transfer within an Omnimagnet is a necessity, particularly to maximize the performance of the device. A transient heat transfer model that incorporates all three heat transfer modes is proposed and experimentally validated with an average normalized root-mean-square error of less than 4% (data normalized by temperature in degree celsius). The transient model is not computationally expensive and is applicable to Omnimagnets with different structures. The code is applied to calculate the maximum safe operational time at a fixed input current or the maximum safe input current for a fixed time interval. The maximum safe operational time and maximum safe input current depend on size and structure of the Omnimagnet and the lowest critical temperature of all the Omnimagnet materials. A parametric study shows that increasing convective heat transfer during cooling, and during heating with low input currents, is an effective method to increase the maximum operational time of the Omnimagnet. The thermal model is also presented in a state-space equation format that can be used in a real-time Kalman filter current controller to avoid device failure due to excessive heating.

References

1.
Petruska
,
A. J.
, and
Abbott
,
J. J.
,
2014
, “
Omnimagnet: An Omnidirectional Electromagnet for Controlled Dipole-Field Generation
,”
IEEE. Trans. Magn.
,
50
(
7
), pp.
1
10
. 10.1109/TMAG.2014.2303784
2.
Petruska
,
A. J.
,
Mahoney
,
A. W.
, and
Abbott
,
J. J.
,
2014
, “
Remote Manipulation With a Stationary Computer-Controlled Magnetic Dipole Source
,”
IEEE Transactions on Robotics
,
30
(
5
), pp.
1222
1227
. 10.1109/TRO.2014.2340111
3.
Clark
,
J. R.
,
Leon
,
L.
,
Warren
,
F. M.
, and
Abbott
,
J. J.
,
2012
, “
Magnetic Guidance of Cochlear Implants: Proof-of-Concept and Initial Feasibility Study
,”
ASME J. Med. Dev.
,
6
(
3
), p.
035002–8
.
4.
Leon
,
L.
,
Warren
,
F. M.
, and
Abbott
,
J. J.
,
2018
, “
An in-vitro Insertion-Force Study of Magnetically Guided Lateral-Wall Cochlear-implant Electrode Arrays
,”
Otology Neur.
,
39
(
2
), pp.
e63
e73
. 10.1097/MAO.0000000000001647
5.
Leon
,
L.
,
Warren
,
F. M.
, and
Abbott
,
J. J.
,
2018
, “
Optimizing the Magnetic Dipole-Field Source for Magnetically Guided Cochlear-Implant Electrode-Array Insertions
,”
J. Med. Robot. Res.
,
3
(
1
), pp.
1
37
. 10.1142/S2424905X18500046
6.
Campelo
,
H. M. R.
,
Quintela
,
M. A.
,
Torriano
,
F.
,
Labbé
,
P.
, and
Picher
,
P.
,
2016
, “
Numerical Thermofluid Analysis of a Power Transformer Disc-Type Winding
,”
2016 IEEE Electrical Insulation Conference (EIC)
,
Montreal, QC, Canada
,
June 19–22
,
IEEE
, pp.
362
365
.
7.
Mufuta
,
J. M.
,
2000
, “
Modelling of the Mixed Convection in the Windings of a Disc-Type Power Transformer
,”
Appl. Therm. Eng.
,
20
(
5
), pp.
417
437
. 10.1016/S1359-4311(99)00034-4
8.
Tsili
,
M. A.
,
Amoiralis
,
E. I.
,
Kladas
,
A. G.
, and
Souflaris
,
A. T.
,
2012
, “
Power Transformer Thermal Analysis by Using An Advanced Coupled 3D Heat Transfer and Fluid Flow Fem Model
,”
Int. J. Therm. Sci.
,
53
(
1
), pp.
188
201
. 10.1016/j.ijthermalsci.2011.10.010
9.
Allahbakhshi
,
M.
, and
Akbari
,
M.
,
2016
, “
Heat Analysis of the Power Transformer Bushings Using the Finite Element Method
,”
Appl. Therm. Eng.
,
100
(
May
), pp.
714
720
. 10.1016/j.applthermaleng.2016.02.065
10.
Campelo
,
H.
,
Lopez-Fernandez
,
X. M.
,
Picher
,
P.
, and
Torriano
,
F.
,
2013
, “
Advanced Thermal Modelling Techniques in Power Transformers. Review and Case Studies
,”
Advanced Research Workshop on Transformers
,
Baiona, Spain
, pp.
6
21
.
11.
Coddé
,
J.
,
der Veken
,
W. V.
, and
Baelmans
,
M.
,
2015
, “
Assessment of a Hydraulic Network Model for Zig-Zag Cooled Power Transformer Windings
,”
Appl. Therm. Eng.
,
80
, pp.
220
228
. 10.1016/j.applthermaleng.2015.01.063
12.
Rodriguez
,
G. R.
,
Garelli
,
L.
,
Storti
,
M.
,
Granata
,
D.
,
Amadei
,
M.
, and
Rossetti
,
M.
,
2017
, “
Numerical and Experimental Thermo-Fluid Dynamic Analysis of a Power Transformer Working in Onan Mode
,”
Appl. Therm. Eng.
,
112
(
February
), pp.
1271
1280
. 10.1016/j.applthermaleng.2016.08.171
13.
Torriano
,
F.
,
Chaaban
,
M.
, and
Picher
,
P.
,
2010
, “
Numerical Study of Parameters Affecting the Temperature Distribution in a Disc-Type Transformer Winding
,”
Appl. Therm. Eng.
,
30
(
14
), pp.
2034
2044
. 10.1016/j.applthermaleng.2010.05.004
14.
Torriano
,
F.
,
Campelo
,
H.
,
Quintela
,
M.
,
Labbé
,
P.
, and
Picher
,
P.
,
2018
, “
Numerical and Experimental Thermofluid Investigation of Different Disc-Type Power Transformer Winding Arrangements
,”
Int. J. Heat Fluid Flow
,
69
(
1
), pp.
62
72
. 10.1016/j.ijheatfluidflow.2017.11.007
15.
Contreras
,
J.
,
Rodriguez
,
E.
, and
Taha-Tijerina
,
J.
,
2017
, “
Nanotechnology Applications for Electrical Transformers—A Review
,”
Electric Power Syst. Res.
,
143
(
Feb.
), pp.
573
584
. 10.1016/j.epsr.2016.10.058
16.
Fontes
,
D. H.
,
Ribatski
,
G.
, and
Filho
,
E. P. B.
,
2015
, “
Experimental Evaluation of Thermal Conductivity, Viscosity and Breakdown Voltage ACc of Nanofluids of Carbon Nanotubes and Diamond in Transformer Oil
,”
Diamond. Relat. Mater.
,
58
(
September
), pp.
115
121
. 10.1016/j.diamond.2015.07.007
17.
Guan
,
W.
,
Jin
,
M.
,
Fan
,
Y.
,
Chen
,
J.
,
Xin
,
P.
,
Li
,
Y.
,
Dai
,
K.
,
Zhang
,
H.
,
Huang
,
T.
, and
Ruan
,
J.
,
2014
, “
Finite Element Modeling of Heat Transfer in a Nanofluid Filled Transformer
,”
IEEE. Trans. Magn.
,
50
(
2
), pp.
253
256
. 10.1109/TMAG.2013.2279479
18.
Modestov
,
M.
,
Kolemen
,
E.
,
Fisher
,
A.
, and
Hvasta
,
M.
,
2017
, “
Electromagnetic Control of Heat Transport Within a Rectangular Channel Filled With Flowing Liquid Metal
,”
Nucl. Fusion.
,
58
(
1
), p.
016009–9
.
19.
Patel
,
J.
,
Parekh
,
K.
, and
Upadhyay
,
R.
,
2016
, “
Prevention of Hot Spot Temperature in a Distribution Transformer Using Magnetic Fluid As a Coolant
,”
Int. J. Therm. Sci.
,
103
(
May
), pp.
35
40
. 10.1016/j.ijthermalsci.2015.12.012
20.
Weinberg
,
M.
, and
Senyurt
,
A.
,
2017
, “
Polyamide Electrical Insulation for Use in Liquid Filled Transformers
,”
Patent No: WO2017123948A1
,
USA
, https://patents.google.com/patent/WO2017123948A1/en.
21.
Lekawa–Raus
,
A.
,
Patmore
,
J.
,
Kurzepa
,
L.
,
Bulmer
,
J.
, and
Koziol
,
K.
,
2014
, “
Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring
,”
Adv. Funct. Mater.
,
24
(
24
), pp.
3661
3682
. 10.1002/adfm.201303716
22.
Esmailie
,
F.
,
Cavilla
,
M. S.
, and
Ameel
,
T. A.
,
2017
, “
A Thermal Transient Model of Heat Transfer Within an Omnimagnet
,”
ASME 2017 International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9
, ASME, p. V008T10A046–10.
23.
Shampine
,
L.
, and
Reichelt
,
M.
,
1997
, “
The Matlab Ode Suite
,”
SIAM J. Sci. Comput.
,
18
(
1
), pp.
1
22
. 10.1137/S1064827594276424
24.
Fluke
,
Fluke 83 V and 87 V Digital Multimeters Detailed Specifications
.
25.
Fluke
,
USB-TEMP and USB-TC Series, Temperature Measurement Devices
.
26.
Kiusalaas
,
J.
,
2015
,
Numerical Methods in Engineering With MATLAB®
, 3rd ed.,
Cambridge University Press
,
New York
.
27.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Lavine
,
A. S.
, and
Bergman
,
T. L.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
,
Hoboken, NJ
.
28.
Pure Copper
, https://www.engineersedge.com/properties_of_metals.htm, Last accessed July 2020.
29.
Haynes
,
W. M.
,
Lide
,
D. R.
, and
Thomas
,
J. B.
,
2016
,
Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
,
CRC Press
,
Boca Raton, Florida
.
31.
Dellinger
,
J. H.
,
1970
,
Bulletin of the Bureau of Standards
,
U.S. G.P.O
,
Washington
.
32.
Engineering ToolBox
,
2003
, “
Emissivity Coefficients Materials
,” https://www.engineeringtoolbox.com/emissivity-coefficients-d_447.html, Last accessed July 2020.
33.
Polyamide - nylon 6 (pa 6)
, http://www.goodfellow.com/E/Polyamide-Nylon-6.html, Last accessed July 2020.
34.
Xiao
,
T.
,
Fan
,
X.
,
Fan
,
D.
, and
Li
,
Q.
,
2017
, “
High Thermal Conductivity and Low Absorptivity/ Emissivity Properties of Transparent Fluorinated Polyimide Films
,”
Polym. Bull.
,
74
(
1
), pp.
4561
4575
. 10.1007/s00289-017-1974-6
35.
EFI alloy 50 (aka magnifer 502, carpenter high permeability 491, alloy 47–50). https://www.edfagan.com/index.php/soft-magnetic-alloys/alloy-50/alloy-50-properties/, Last accessed July 2020.
36.
Polyurethane Insulation-Engineering Toolbox
, https://www.engineeringtoolbox.com/polyurethane-insulation-k-values-d˙1174.html, Last accessed July 2020.
37.
Martinez
,
I.
, “
Properties of Solids
,” http://webserver.dmt.upm.es/~isidoro/dat1/eSol.pdf, Last accessed October 2020.
38.
Catton
,
I.
,
1978
, “
Natural Convection in Enclosures
,”
6th International Heat Transfer Conference
,
Toronto, Canada
,
Aug. 7–11
, pp.
13
31
.
39.
Churchill
,
S. W.
, and
Chu
,
H. H.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat. Mass. Transfer.
,
18
(
11
), pp.
1323
1329
. 10.1016/0017-9310(75)90243-4
40.
Radziemska
,
E.
, and
Lewandowski
,
W.
,
2001
, “
Heat Transfer by Natural Convection From An Isothermal Downward-Facing Round Plate in Unlimited Space
,”
Appl. Energy.
,
68
(
4
), pp.
347
366
. 10.1016/S0306-2619(00)00061-1
41.
Lloyd
,
J. R.
, and
Moran
,
W. R.
,
1974
, “
Natural Convection Adjacent to Horizontal Surface of Various Planforms
,”
ASME J. Heat. Transfer.
,
96
(
4
), pp.
443
447
. 10.1115/1.3450224
You do not currently have access to this content.