Abstract

Three-dimensional numerical study is presented in this work that deals with thermo-hydrodynamic and entropy generation analysis of water-based nanofluids in recharging microchannel (RMC). Four different water-based nanofluids (Al2O3, CuO, SiO2, and ZnO) are considered with volume concentrations of 1–5% and nanoparticle diameters of 10–50 nm to understand their effect on thermo-hydrodynamic performance and entropy generation. Substrate bottom surface is subjected to a constant wall heat flux of 100 W/cm2 while coolant with Reynolds number range of 100–500 flows through the RMC. It is revealed that among all the nanofluids under investigation, water/Al2O3 provides enhanced thermal performance with higher effectiveness parameter (η), and it also shows reduced entropy generation. With increasing volume concentration of water/Al2O3 nanofluid, heat transfer coefficient increases, effectiveness parameter increases, and entropy generation reduces. Water/Al2O3 nanofluid with smaller nanoparticle diameter shows enhanced heat transfer coefficient and reduced entropy generation, whereas it shows decreased effectiveness parameter. This is attributed to increased pressure drop with decreasing particle diameter. This study suggests that an optimized combination of particle diameter and volume concentration should be chosen for using nanofluid-based coolants for high heat flux removal.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
. 10.1109/EDL.1981.25367
2.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Waltham, MA
.
3.
Sidik
,
N. A. C.
,
Muhamad
,
M. N. A. W.
,
Japar
,
W. M. A. A.
, and
Rasid
,
Z. A.
,
2017
, “
An Overview of Passive Techniques for Heat Transfer Augmentation in Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
88
, pp.
74
83
. 10.1016/j.icheatmasstransfer.2017.08.009
4.
Xie
,
G.
,
Li
,
Y.
,
Zhang
,
F.
, and
Sundén
,
B.
,
2016
, “
Analysis of Micro-Channel Heat Sinks With Rectangular-Shaped Flow Obstructions
,”
Numer. Heat Transfer Part A
,
69
(
4
), pp.
335
351
. 10.1080/10407782.2015.1080580
5.
Li
,
Y.
,
Xia
,
G.
,
Jia
,
Y.
,
Ma
,
D.
,
Cai
,
B.
, and
Wang
,
J.
,
2017
, “
Effect of Geometric Configuration on the Laminar Flow and Heat Transfer in Microchannel Heat Sinks With Cavities and Fins
,”
Numer. Heat Transfer Part A
,
71
(
5
), pp.
528
546
. 10.1080/10407782.2016.1277940
6.
Xu
,
Z.
,
Han
,
Z.
,
Wang
,
J.
, and
Liu
,
Z.
,
2018
, “
The Characteristics of Heat Transfer and Flow Resistance in a Rectangular Channel With Vortex Generators
,”
Int. J. Heat Mass Transfer
,
116
, pp.
61
72
. 10.1016/j.ijheatmasstransfer.2017.08.083
7.
Wang
,
R. J.
,
Wang
,
J. W.
,
Lijin
,
B. Q.
, and
Zhu
,
Z. F.
,
2018
, “
Parameterization Investigation on the Microchannel Heat Sink With Slant Rectangular Ribs by Numerical Simulation
,”
Appl. Therm. Eng.
,
133
, pp.
428
438
. 10.1016/j.applthermaleng.2018.01.021
8.
Pan
,
M.
,
Wang
,
H.
,
Zhong
,
Y.
,
Fang
,
T.
, and
Zhong
,
X.
,
2019
, “
Numerical Simulation of the Fluid Flow and Heat Transfer Characteristics of Microchannel Heat Exchangers With Different Reentrant Cavities
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
11
), pp.
4334
4348
. 10.1108/HFF-03-2019-0252
9.
Xu
,
J. L.
,
Gan
,
Y. H.
,
Zhang
,
D. C.
, and
Li
,
X. H.
,
2005
, “
Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1662
1674
. 10.1016/j.ijheatmasstransfer.2004.12.008
10.
Chai
,
L.
, and
Wang
,
L.
,
2018
, “
Thermal-Hydraulic Performance of Interrupted Microchannel Heat Sinks With Different Rib Geometries in Transverse Microchambers
,”
Int. J. Therm. Sci.
,
127
, pp.
201
212
. 10.1016/j.ijthermalsci.2018.01.029
11.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2008
, “
Single-Phase and Two-Phase Cooling Using Hybrid Micro-Channel/Slot-Jet Module
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3825
3839
. 10.1016/j.ijheatmasstransfer.2007.12.015
12.
Zhang
,
Y.
,
Wang
,
S.
, and
Ding
,
P.
,
2017
, “
Effects of Channel Shape on the Cooling Performance of Hybrid Micro-Channel and Slot-Jet Module
,”
Int. J. Heat Mass Transfer
,
113
, pp.
295
309
. 10.1016/j.ijheatmasstransfer.2017.05.092
13.
Samal
,
S. K.
, and
Moharana
,
M. K.
,
2019
, “
Thermo-Hydraulic Performance Evaluation of a Novel Design Recharging Microchannel
,”
Int. J. Therm. Sci.
,
135
, pp.
459
470
. 10.1016/j.ijthermalsci.2018.09.006
14.
Samal
,
S. K.
, and
Moharana
,
M. K.
,
2020
, “
Thermo-Hydrodynamic Performance Evaluation of Recharging, Interrupted and Simple Microchannels: A Comparative Study
,”
ASME J. Heat Transfer
,
142
(
1
), p.
012503
. 10.1115/1.4045066
15.
Hussien
,
A. A.
,
Abdullah
,
M. Z.
, and
Al-Nimr
,
M. A.
,
2016
, “
Single-Phase Heat Transfer Enhancement in Micro/Minichannels Using Nanofluids: Theory and Applications
,”
Appl. Energy
,
164
, pp.
733
755
. 10.1016/j.apenergy.2015.11.099
16.
Chamkha
,
A. J.
,
Molana
,
M.
,
Rahnama
,
A.
, and
Ghadami
,
F.
,
2018
, “
On the Nanofluids Applications in Microchannels: A Comprehensive Review
,”
Powder Technol.
,
332
, pp.
287
322
. 10.1016/j.powtec.2018.03.044
17.
Bahiraei
,
M.
, and
Heshmatian
,
S.
,
2018
, “
Electronics Cooling With Nanofluids: A Critical Review
,”
Energy Convers. Manage.
,
172
, pp.
438
456
. 10.1016/j.enconman.2018.07.047
18.
Ho
,
C. J.
,
Wei
,
L. C.
, and
Li
,
Z. W.
,
2010
, “
An Experimental Investigation of Forced Convective Cooling Performance of a Microchannel Heat Sink With Al2O3/Water Nanofluid
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
96
103
. 10.1016/j.applthermaleng.2009.07.003
19.
Lelea
,
D.
,
2011
, “
The Performance Evaluation of Al2O3/Water Nanofluid Flow and Heat Transfer in Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3891
3899
. 10.1016/j.ijheatmasstransfer.2011.04.038
20.
Selvakumar
,
P.
, and
Suresh
,
S.
,
2012
, “
Convective Performance of CuO/Water Nanofluid in an Electronic Heat Sink
,”
Exp. Therm. Fluid Sci.
,
40
, pp.
57
63
. 10.1016/j.expthermflusci.2012.01.033
21.
Kuppusamy
,
N. R.
,
Mohammed
,
H. A.
, and
Lim
,
C. W.
,
2013
, “
Numerical Investigation of Trapezoidal Grooved Microchannel Heat Sink Using Nanofluids
,”
Thermochim. Acta
,
573
, pp.
39
56
. 10.1016/j.tca.2013.09.011
22.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Chabi
,
A. R.
, and
Salimi
,
M.
,
2014
, “
Performance of Water Based CuO and Al2O3 Nanofluids in a Cu–Be Alloy Heat Sink With Rectangular Microchannels
,”
Energy Convers. Manage.
,
86
, pp.
28
38
. 10.1016/j.enconman.2014.05.013
23.
Azizi
,
Z.
,
Alamdari
,
A.
, and
Malayeri
,
M. R.
,
2015
, “
Convective Heat Transfer of Cu–Water Nanofluid in a Cylindrical Microchannel Heat Sink
,”
Energy Convers. Manage.
,
101
, pp.
515
524
. 10.1016/j.enconman.2015.05.073
24.
Xia
,
G. D.
,
Liu
,
R.
,
Wang
,
J.
, and
Du
,
M.
,
2016
, “
The Characteristics of Convective Heat Transfer in Microchannel Heat Sinks Using Al2O3 and TiO2 Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
256
264
. 10.1016/j.icheatmasstransfer.2016.05.034
25.
Chabi
,
A. R.
,
Zarrinabadi
,
S.
,
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
, and
Salimi
,
M.
,
2017
, “
Local Convective Heat Transfer Coefficient and Friction Factor of CuO/Water Nanofluid in a Microchannel Heat Sink
,”
Heat Mass Transfer
,
53
(
2
), pp.
661
671
. 10.1007/s00231-016-1851-0
26.
Manay
,
E.
, and
Sahin
,
B.
,
2017
, “
Heat Transfer and Pressure Drop of Nanofluids in a Microchannel Heat Sink
,”
Heat Transfer Eng.
,
38
(
5
), pp.
510
522
. 10.1080/10407782.2016.1195162
27.
Abdollahi
,
A.
,
Sharma
,
R. N.
,
Mohammed
,
H. A.
, and
Vatani
,
A.
,
2018
, “
Heat Transfer and Flow Analysis of Al2O3–Water Nanofluids in Interrupted Microchannel Heat Sink With Ellipse and Diamond Ribs in the Transverse Microchambers
,”
Heat Transfer Eng.
,
39
(
16
), pp.
1461
1469
. 10.1080/01457632.2017.1379344
28.
Jaferian
,
V.
,
Toghraie
,
D.
,
Pourfattah
,
F.
,
Akbari
,
O. A.
, and
Talebizadehsardari
,
P.
,
2019
, “
Numerical Investigation of the Effect of Water/Al2O3 Nanofluid on Heat Transfer in Trapezoidal, Sinusoidal and Stepped Microchannels
,”
Int. J. Numer. Methods Heat Fluid Flow
,
30
(
5
), pp.
2439
2465
. 10.1108/HFF-05-2019-0377
29.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2007
,
Thermodynamics: An Engineering Approach
,
McGraw-Hill
,
New York
.
30.
Bianco
,
V.
,
Vafai
,
K.
,
Manca
,
O.
, and
Nardini
,
S.
,
2015
,
Heat Transfer Enhancement With Nanofluids
,
CRC Press
,
Boca Raton, FL
.
31.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
John Willey & Sons
,
New York
.
32.
Mahian
,
O.
,
Kianifar
,
A.
,
Kleinstreuer
,
C.
,
Al-nimr
,
M. A.
,
Pop
,
I.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2013
, “
A Review of Entropy Generation in Nanofluid Flow
,”
Int. J. Heat Mass Transfer
,
65
, pp.
514
532
. 10.1016/j.ijheatmasstransfer.2013.06.010
33.
Awad
,
M. M.
,
2015
, “
A Review of Entropy Generation in Microchannels
,”
Adv. Mech. Eng.
,
7
(
12
), pp.
1687814015590297-1
1687814015590297-32
. 10.1177%2F1687814015590297
34.
Singh
,
P. K.
,
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
Entropy Generation Due to Flow and Heat Transfer in Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4757
4767
. 10.1016/j.ijheatmasstransfer.2010.06.016
35.
Shalchi-Tabrizi
,
A.
, and
Seyf
,
H. R.
,
2012
, “
Analysis of Entropy Generation and Convective Heat Transfer of Al2O3 Nanofluid Flow in a Tangential Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4366
4375
. 10.1016/j.ijheatmasstransfer.2012.04.005
36.
Sohel
,
M. R.
,
Saidur
,
R.
,
Hassan
,
N. H.
,
Elias
,
M. M.
,
Khaleduzzaman
,
S. S.
, and
Mahbubul
,
I. M.
,
2013
, “
Analysis of Entropy Generation Using Nanofluid Flow Through the Circular Microchannel and Minichannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
85
91
. 10.1016/j.icheatmasstransfer.2013.05.011
37.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2014
, “
Entropy Generation Analysis of Turbulent Convection Flow of Al2O3–Water Nanofluid in a Circular Tube Subjected to Constant Wall Heat Flux
,”
Energy Convers. Manage.
,
77
, pp.
306
314
. 10.1016/j.enconman.2013.09.049
38.
Ebrahimi
,
A.
,
Rikhtegar
,
F.
,
Sabaghan
,
A.
, and
Roohi
,
E.
,
2016
, “
Heat Transfer and Entropy Generation in a Microchannel With Longitudinal Vortex Generators Using Nanofluids
,”
Energy
,
101
, pp.
190
201
. 10.1016/j.energy.2016.01.102
39.
Ji
,
Y.
,
Zhang
,
H. C.
,
Yang
,
X.
, and
Shi
,
L.
,
2017
, “
Entropy Generation Analysis and Performance Evaluation of Turbulent Forced Convective Heat Transfer to Nanofluids
,”
Entropy
,
19
(
3
), pp.
108-1
108-18
. 10.3390/e19030108
40.
Heshmatian
,
S.
, and
Bahiraei
,
M.
,
2017
, “
Numerical Investigation of Entropy Generation to Predict Irreversibilities in Nanofluid Flow Within a Microchannel: Effects of Brownian Diffusion, Shear Rate and Viscosity Gradient
,”
Chem. Eng. Sci.
,
172
, pp.
52
65
. 10.1016/j.ces.2017.06.024
41.
Manay
,
E.
,
Akyürek
,
E. F.
, and
Sahin
,
B.
,
2018
, “
Entropy Generation of Nanofluid Flow in a Microchannel Heat Sink
,”
Results Phys.
,
9
, pp.
615
624
. 10.1016/j.rinp.2018.03.013
42.
Dormohammadi
,
R.
,
Farzaneh-Gord
,
M.
,
Ebrahimi-Moghadam
,
A.
, and
Ahmadi
,
M. H.
,
2018
, “
Heat Transfer and Entropy Generation of the Nanofluid Flow Inside Sinusoidal Wavy Channels
,”
J. Mol. Liq.
,
269
, pp.
229
240
. 10.1016/j.molliq.2018.07.119
43.
Narendran
,
G.
,
Gnanasekaran
,
N.
, and
Perumal
,
D. A.
,
2020
, “
Thermodynamic Irreversibility and Conjugate Effects of Integrated Microchannel Cooling Device Using TiO2 Nanofluid
,”
Heat Mass Transfer
,
56
(
2
), pp.
489
505
. 10.1007/s00231-019-02704-z
44.
Bahiraei
,
M.
,
Monavari
,
A.
,
Naseri
,
M.
, and
Moayedi
,
H.
,
2020
, “
Irreversibility Characteristics of a Modified Microchannel Heat Sink Operated With Nanofluid Considering Different Shapes of Nanoparticles
,”
Int. J. Heat Mass Transfer
,
151
, pp.
119359-1
119359-17
. 10.1016/j.ijheatmasstransfer.2020.119359
45.
Sakanova
,
A.
,
Keian
,
C. C.
, and
Zhao
,
J.
,
2015
, “
Performance Improvements of Microchannel Heat Sink Using Wavy Channel and Nanofluids
,”
Int. J. Heat Mass Transfer
,
89
, pp.
59
74
. 10.1016/j.ijheatmasstransfer.2015.05.033
46.
Wu
,
J.
,
Zhao
,
J.
,
Lei
,
J.
, and
Liu
,
B.
,
2016
, “
Effectiveness of Nanofluid on Improving the Performance of Microchannel Heat Sink
,”
Appl. Therm. Eng.
,
101
, pp.
402
412
. 10.1016/j.applthermaleng.2016.01.114
47.
Maganti
,
L. S.
, and
Dhar
,
P.
,
2017
, “
Consequences of Flow Configuration and Nanofluid Transport on Entropy Generation in Parallel Microchannel Cooling Systems
,”
Int. J. Heat Mass Transfer
,
109
, pp.
555
563
. 10.1016/j.ijheatmasstransfer.2017.02.036
48.
He
,
W.
,
Mashayekhi
,
R.
,
Toghraie
,
D.
,
Akbari
,
O. A.
,
Li
,
Z.
, and
Tlili
,
I.
,
2020
, “
Hydrothermal Performance of Nanofluid Flow in a Sinusoidal Double Layer Microchannel in Order to Geometric Optimization
,”
Int. Commun. Heat Mass Transfer
,
117
, p.
104700-1
104700-9
. 10.1016/j.icheatmasstransfer.2020.104700
49.
Sabaghan
,
A.
,
Edalatpour
,
M.
,
Moghadam
,
M. C.
,
Roohi
,
E.
, and
Niazmand
,
H.
,
2016
, “
Nanofluid Flow and Heat Transfer in a Microchannel With Longitudinal Vortex Generators: Two-Phase Numerical Simulation
,”
Appl. Therm. Eng.
,
100
, pp.
179
189
. 10.1016/j.applthermaleng.2016.02.020
50.
Gorjaei
,
A. R.
,
Soltani
,
M.
,
Bahiraei
,
M.
, and
Kashkooli
,
F. M.
,
2018
, “
CFD Simulation of Nanofluid Forced Convection Inside a Three-Dimensional Annulus by Two-Phase Mixture Approach: Heat Transfer and Entropy Generation Analyses
,”
Int. J. Mech. Sci.
,
146
, pp.
396
404
. 10.1016/j.ijmecsci.2018.08.002
51.
Shoghl
,
S. N.
,
Loloei
,
Z.
, and
Moraveji
,
M. K.
,
2019
, “
Three-Dimensional Multiphase CFD Modeling of Thermal–Hydraulic Characteristics of Nanofluid Flow in Helical Microchannels
,”
J. Therm. Anal. Calorim.
,
136
(
4
), pp.
1831
1846
. 10.1007/s10973-018-7821-7
52.
Shi
,
X. J.
,
Li
,
S.
,
Agnew
,
B.
, and
Zheng
,
Z. H.
,
2020
, “
Effects of Geometrical Parameters and Reynolds Number on the Heat Transfer and Flow Characteristics of Rectangular Micro-Channel Using Nano-Fluid as Working Fluid
,”
Therm. Sci. Eng. Prog.
,
15
, pp.
100456-1
100456-8
. 10.1016/j.tsep.2019.100456
53.
Bianco
,
V.
,
Chiacchio
,
F.
,
Manca
,
O.
, and
Nardini
,
S.
,
2009
, “
Numerical Investigation of Nanofluids Forced Convection in Circular Tubes
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3632
3642
. 10.1016/j.applthermaleng.2009.06.019
54.
Akbari
,
M.
,
Galanis
,
N.
, and
Behzadmehr
,
A.
,
2012
, “
Comparative Assessment of Single and Two-Phase Models for Numerical Studies of Nanofluid Turbulent Forced Convection
,”
Int. J. Heat Fluid Flow
,
37
, pp.
136
146
. 10.1016/j.ijheatfluidflow.2012.05.005
55.
Ghale
,
Z. Y.
,
Haghshenasfard
,
M.
, and
Esfahany
,
M. N.
,
2015
, “
Investigation of Nanofluids Heat Transfer in a Ribbed Microchannel Heat Sink Using Single-Phase and Multiphase CFD Models
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
122
129
. 10.1016/j.icheatmasstransfer.2015.08.012
56.
Ambreen
,
T.
, and
Kim
,
M. H.
,
2017
, “
Comparative Assessment of Numerical Models for Nanofluids’ Laminar Forced Convection in Micro and Mini Channels
,”
Int. J. Heat Mass Transfer
,
115
, pp.
513
523
. 10.1016/j.ijheatmasstransfer.2017.08.046
57.
Moraveji
,
M. K.
,
Barzegarian
,
R.
,
Bahiraei
,
M.
,
Barzegarian
,
M.
,
Aloueyan
,
A.
, and
Wongwises
,
S.
,
2018
, “
Numerical Evaluation on Thermal–Hydraulic Characteristics of Dilute Heat-Dissipating Nanofluids Flow in Microchannels
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
671
683
. 10.1007/s10973-018-7181-3
58.
Amanuel
,
T.
, and
Mishra
,
M.
,
2021
, “
Comparative Study of Thermal and Hydraulic Performance of Three-Fluid Tubular Heat Exchanger With CuO–Water Nanofluid: Single-Phase and Multi-Phase Approaches
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031012
. 10.1115/1.4047938
59.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
60.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
. 10.1016/S0017-9310(99)00369-5
61.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer Int. J.
,
11
(
2
), pp.
151
170
. 10.1080/08916159808946559
62.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
. 10.1021/i160003a005
63.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage.
,
52
(
1
), pp.
789
793
. 10.1016/j.enconman.2010.06.072
64.
Paoletti
,
S.
,
Rispoli
,
F.
, and
Sciubba
,
E.
,
1989
, “
Calculation of Exergetic Losses in Compact Heat Exchanger Passages
,”
ASME Adv. Energy Syst.
,
R.
Bajura
,
H. N.
Shapiro
, and
J. R.
Zaworski
, eds.
10
(
2
), pp.
21
29
.
65.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
452
463
. 10.1016/j.ijheatmasstransfer.2006.08.001
66.
Phillips
,
R. J.
,
1987
, “
Forced-Convection, Liquid-Cooled, Microchannel Heat Sinks
,”
MS Thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
You do not currently have access to this content.