Abstract

Thermoelectric-based waste heat recovery is a competent technique to reduce the exhaust emissions and fuel consumption of automobiles. Thermal and hydraulic characteristics of the exhaust heat exchanger plays a decisive role in the extent of waste heat recovery from the exhaust gas. In this study, the exhaust heat exchanger having twisted tape inserts is proposed to increase the internal heat transfer coefficient. The dimensionless Nusselt number and friction factor were evaluated experimentally for different designs of the twisted tapes. The experiments were performed for the Reynolds number in the range 2300–25000. The considered geometric parameters of the twisted rib explored were the pitch fraction, twist fraction, and slope. The obtained results were compared to reveal the best feasible design of the twisted tape. The maximum net thermohydraulic efficiency factor achieved for the system in the present analysis is 1.93. With the use of twisted tapes, the area of the exhaust heat exchanger can be greatly reduced for the same power output as flat geometry. This would help for the integration of the waste heat recovery with the engine, where the space available is very limited.

References

1.
Peng
,
Z.
,
Wang
,
T.
,
He
,
Y.
,
Yang
,
X.
, and
Lu
,
L.
,
2013
, “
Analysis of Environmental and Economic Benefits of Integrated Exhaust Energy Recovery (EER) for Vehicles
,”
Appl. Energy
,
105
(
1
), pp.
238
243
. 10.1016/j.apenergy.2013.01.004
2.
Armstead
,
J. R.
, and
Miers
,
S. A.
,
2014
, “
Review of Waste Heat Recovery Mechanisms for Internal Combustion Engines
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
1
), p.
014001
. 10.1115/1.4024882
3.
Fernandez-Yanez
,
P.
,
Armas
,
O.
,
Kiwan
,
R.
,
Stefanopoulou
,
A. G.
, and
Boehman
,
A. L.
,
2018
, “
A Thermoelectric Generator in Exhaust Systems of Spark-Ignition and Compression-Ignition Engines. A Comparison With an Electric Turbo-generator
,”
Appl. Energy
,
229
(
1
), pp.
80
87
. 10.1016/j.apenergy.2018.07.107
4.
Quan
,
R.
,
Liu
,
G.
,
Wang
,
C.
,
Zhou
,
W.
,
Huang
,
L.
, and
Deng
,
Y.
,
2018
, “
Performance Investigation of an Exhaust Thermoelectric Generator for Military SUV Application
,”
Coatings
,
8
(
45
), pp.
1
18
.
5.
Lan
,
S.
,
Yang
,
Z.
,
Chen
,
R.
, and
Stobart
,
R.
,
2018
, “
A Dynamic Model for Thermoelectric Generator Applied to Vehicle Waste Heat Recovery
,”
Appl. Energy
,
210
(
1
), pp.
327
338
. 10.1016/j.apenergy.2017.11.004
6.
Meng
,
J. H.
,
Wang
,
X. D.
, and
Chen
,
W. H.
,
2016
, “
Performance Investigation and Design Optimization of a Thermoelectric Generator Applied in Automobile Exhaust Waste Heat Recovery
,”
Energy Convers. Manage.
,
120
(
1
), pp.
71
80
. 10.1016/j.enconman.2016.04.080
7.
Mostafavi
,
S. A.
, and
Mahmoudi
,
M.
,
2018
, “
Modeling and Fabricating a Prototype of a Thermoelectric Generator System of Heat Energy Recovery From Hot Exhaust Gases and Evaluating the Effects of Important System Parameters
,”
Appl. Therm. Eng.
,
132
(
1
), pp.
624
636
. 10.1016/j.applthermaleng.2018.01.018
8.
Lesage
,
F. J.
,
Sempels
,
ÉV
, and
Bertrand
,
N. L.
,
2013
, “
A Study on Heat Transfer Enhancement Using Flow Channel Inserts for Thermoelectric Power Generation
,”
Energy Convers. Manage.
,
75
(
1
), pp.
532
541
. 10.1016/j.enconman.2013.07.002
9.
Lu
,
C.
,
Wang
,
S.
,
Chen
,
C.
, and
Li
,
Y.
,
2015
, “
Effects of Heat Enhancement for Exhaust Heat Exchanger on the Performance of Thermoelectric Generator
,”
Appl. Therm. Eng.
,
89
(
1
), pp.
270
279
. 10.1016/j.applthermaleng.2015.05.086
10.
Ma
,
T.
,
Pandit
,
J.
,
Ekkad
,
S. V.
,
Huxtable
,
S. T.
, and
Wang
,
Q.
,
2015
, “
Simulation of Thermoelectric-Hydraulic Performance of a Thermoelectric Power Generator With Longitudinal Vortex Generators
,”
Energy
,
84
(
1
), pp.
695
703
. 10.1016/j.energy.2015.03.033
11.
Amaral
,
C.
,
Brandão
,
C.
,
Sempels
,
ÉV
, and
Lesage
,
F. J.
,
2014
, “
Net Thermoelectric Generator Power Output Using Inner Channel Geometries With Alternating Flow Impeding Panels
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
94
101
. 10.1016/j.applthermaleng.2013.12.044
12.
Wang
,
Y.
,
Li
,
S.
,
Xie
,
X.
,
Deng
,
Y.
,
Liu
,
X.
, and
Su
,
C.
,
2018
, “
Performance Evaluation of an Automotive Thermoelectric Generator With Inserted Fins or Dimpled-Surface Hot Heat Exchanger
,”
Appl. Energy
,
218
(
1
), pp.
391
401
. 10.1016/j.apenergy.2018.02.176
13.
Wang
,
Y.
,
Li
,
S.
,
Zhang
,
Y.
,
Yang
,
X.
,
Deng
,
Y.
, and
Su
,
C.
,
2016
, “
The Influence of Inner Topology of Exhaust Heat Exchanger and Thermoelectric Module Distribution on the Performance of Automotive Thermoelectric Generator
,”
Energy Convers. Manage.
,
126
(
1
), pp.
266
277
. 10.1016/j.enconman.2016.08.009
14.
Su
,
C. Q.
,
Wang
,
W. S.
,
Liu
,
X.
, and
Deng
,
Y. D.
,
2014
, “
Simulation and Experimental Study on Thermal Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators
,”
Case Studies Therm. Eng.
,
4
(
1
), pp.
85
91
. 10.1016/j.csite.2014.06.002
15.
Bai
,
S.
,
Lu
,
H.
,
Wu
,
T.
,
Yin
,
X.
,
Shi
,
X.
, and
Chen
,
L.
,
2014
, “
Numerical and Experimental Analysis for Exhaust Heat Exchangers in Automobile Thermoelectric Generators
,”
Case Studies Therm. Eng.
,
4
(
1
), pp.
99
112
. 10.1016/j.csite.2014.07.003
16.
Zhu
,
Y.
,
Yang
,
F.
, and
Guo
,
Y.
,
2020
, “
A Variable-Curvature Spiral-Coil Heat Exchanger for Automobile Exhaust Heat Recovery
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031005
. 10.1115/1.4044605
17.
He
,
W.
,
Wang
,
S.
,
Xing
,
Z.
,
Yanzhe
,
L.
, and
Chi
,
L.
,
2015
, “
Optimization Design Method of Thermoelectric Generator Based on Exhaust gas Parameters for Recovery of Engine Waste Heat
,”
Energy
,
91
(
1
), pp.
1
9
. 10.1016/j.energy.2015.08.022
18.
Niu
,
Z.
,
Diao
,
H.
,
Yu
,
S.
,
Jiao
,
K.
,
Du
,
Q.
, and
Shu
,
G.
,
2014
, “
Investigation and Design Optimization of Exhaust-Based Thermoelectric Generator System for Internal Combustion Engine
,”
Energy Convers. Manage.
,
85
(
1
), pp.
85
101
. 10.1016/j.enconman.2014.05.061
19.
Kreith
,
F.
, and
Berger
,
S. A.
,
1999
,
Mechanical Engineering Handbook
,
CRC Press
,
Boca Raton, FL
.
20.
Incropera
,
F.
, and
Dewitt
,
P. D.
,
2006
,
Introduction to Heat Transfer
, 5th ed.,
John Wiley & Sons Inc
,
New York
.
21.
Kumar
,
A.
, and
Apurba Layek
,
A.
,
2018
, “
Thermo-Hydraulic Performance of Solar Air Heater Having Twisted Rib Over the Absorber Plate
,”
Int. J. Therm. Sci.
,
133
(
1
), pp.
181
195
. 10.1016/j.ijthermalsci.2018.07.026
22.
He
,
W.
,
Wang
,
S.
, and
Yang
,
Y.
,
2017
, “
Peak Power Evaluation and Optimal Dimension Design of Exhaust Heat Exchanger for Different Gas Parameters in Automobile Thermoelectric Generator
,”
Energy Convers. Manage.
,
151
(
1
), pp.
661
669
. 10.1016/j.enconman.2017.08.067
23.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
385
387
.
24.
Karana
,
D. R.
, and
Sahoo
,
R. R.
,
2018
, “
Effect on TEG Performance for Waste Heat Recovery of Automobiles Using MgO and ZnO Nanofluid Coolants
,”
Case Studies Therm. Eng.
,
12
(
1
), pp.
358
364
. 10.1016/j.csite.2018.05.006
25.
Rowe
,
D. M.
,
2006
,
Thermoelectrics Handbook: Macro to Nano
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.