Abstract

This paper reports the effect of setting density on flow uniformity, pressure drop, pumping power, and convective heat transfer coefficients (CHTCs). High-density setting (HDS) comprises 768 bricks, and low-density setting (LDS) contains 512 bricks are tested for different inlet air velocities using both local and average approaches. The investigation is carried out using a 3D-computational fluid dynamics (CFD) model with k–ω turbulence model. Both settings are validated against experimental data reported in the literature with errors less than 1.9% for pressure drop and −1.0% for brick surface temperature. The reported results indicated that the LDS has distinct benefits over the HDS as it enhances the flow uniformity, particularly in the stack channels. Also, LDS attains lower pressure drop, pumping power, and firing time than HDS by 45.93%, 50%, and 35%, respectively. In addition, LDS produces larger CHTCs, rates of heat transfer for individual bricks, and the ratio of heat transfer to pumping power than HDS by 24.53%, 35%, and 34%, respectively. Moreover, LDS produces more homogenous heating of the setting bricks than HDS as the maximum difference of CHTCs between bricks is about 4.39% for LDS and 19.62% for HDS. The best performance of the firing process is accomplished at low inlet air velocity (3 m/s), whereas the highest productivity is achieved at high inlet air velocity (9 m/s).

References

1.
Rentz
,
A.
,
Schmittinger
,
R.
,
Jochum
,
F.
, and
Schultmann
,
2001
, “
Exemplary Investigation Into the State of Practical Realisation of Integrated Environmental Protection Within the Ceramics Industry Under Observance of the IPPC-Directive and the Development of BAT Reference Documents
,”
Environmental Research Plan of the Federal Minister for the Environment, Nature Conservation and Safety
,
Research Project 298 94 313/07
.
2.
Vogt
,
S.
, and
Beckmann
,
M.
,
2008
, “
Convective Heat Transfer on Brick Settings
,”
Ziegelindustrie Int.
,
60
(
9
), pp.
34
49
.
3.
Meng
,
P.
,
2011
, “
Solid–Solid Recuperation to Improve the Energy Efficiency of Tunnel Kilns
,”
Ph. D. dissertation
,
Otto-von-Guericke-University
,
Magdeburg, Germany
.
4.
Pariyar
,
S. K.
, and
Ferdous
,
T. D.
,
2013
, “
Environment and Health Impact for Brick Kilns in Kathmandu Valley
,”
Int. J. Sci. Technol. Res.
,
2
(
5
), pp.
184
187
.
5.
Tehzeeb
,
A. H.
,
Bhuiyan
,
M.
, and
Jayasuriya
,
N.
,
2012
, “
Evaluation of Brick Kiln Performances Using Computational Fluid Dynamics (CFD)
,”
Energy Environ. Eng. J.
,
1
(
2
), pp.
86
93
.
6.
da Silva Almeida
,
G.
,
da Silva
,
J. B.
,
e Silva
,
C. J.
,
Swarnakar
,
R.
,
de Araújo Neves
,
G.
, and
de Lima
,
A. G.
,
2013
, “
Heat and Mass Transport in an Industrial Tunnel Dryer: Modeling and Simulation Applied to Hollow Bricks
,”
Appl. Thermal Eng.
,
55
(
1–2
), pp.
78
86
. 10.1016/j.applthermaleng.2013.02.042
7.
Refaey
,
H. A.
, and
Specht
,
E.
,
2013
, “
Flow Field Visualization to Simulate the Burning of Sanitary Ware in Tunnel Kilns
,”
Proceedings of ICFD11: Eleventh International Conference of Fluid Dynamics
,
Alexandria, Egypt
,
Dec. 19–21
, pp.
1
13
.
8.
Mancuhan
,
E.
,
Kucukada
,
K.
, and
Alpman
,
E.
,
2011
, “
Mathematical Modeling and Simulation of the Preheating Zone of a Tunnel Kiln
,”
J. Thermal Sci. Technol.
,
31
(
2
), pp.
79
86
.
9.
Kaya
,
S.
,
Küçükada
,
K.
, and
Mançuhan
,
E.
,
2008
, “
Model-Based Optimization of Heat Recovery in the Cooling Zone of a Tunnel Kiln
,”
Appl. Thermal Eng.
,
28
(
5–6
), pp.
633
641
. 10.1016/j.applthermaleng.2007.04.002
10.
Nicolau
,
V.
, and
Dadam
,
A. P.
,
2009
, “
Numerical and Experimental Thermal Analysis of a Tunnel Kiln Used in Ceramic Production
,”
J. Braz. Soc. Mech. Sci. Eng.
,
31
(
4
), pp.
297
304
. 10.1590/S1678-58782009000400003
11.
Refaey
,
H. A.
,
Specht
,
E.
, and
Salem
,
M. R.
,
2015
, “
Influence of Fuel Distribution and Heat Transfer on Energy Consumption in Tunnel Kilns
,”
Int. J. Adv. Eng. Technol.
,
8
(
3
), pp.
281
293
.
12.
German Federal Environmental Agency
,
2007
, “
The Best available Techniques in the Ceramic Industry
,”
[Merkblatt uber die Besten Verfugbaren Techniken in der Keramikindustrie, Umweltbundesamt, (2007) in German]
,
Environmental Protection Agency
,
Wexford, Ireland
.
13.
Mancuhan
,
E.
, and
Kucukada
,
K.
,
2006
, “
Optimization of Fuel and Air Use in a Tunnel Kiln to Produce Coal Admixed Bricks
,”
Appl. Thermal Eng.
,
26
(
14–15
), pp.
1556
1563
. 10.1016/j.applthermaleng.2005.12.002
14.
Abou-Ziyan
,
H. Z.
,
2004
, “
Convective Heat Transfer From Different Brick Arrangements in Tunnel Kilns
,”
Appl. Thermal Eng.
,
24
(
2–3
), pp.
171
191
. 10.1016/j.applthermaleng.2003.08.014
15.
Abou-Ziyan
,
H.
,
Almesri
,
I.
,
Alrahmani
,
M.
, and
Almutairi
,
J.
,
2018
, “
Convective Heat Transfer Coefficients of Multifaceted Longitudinal and Transversal Bricks of Lattice Setting in Tunnel Kilns
,”
ASME J. Thermal Sci. Eng. Appl.
,
10
(
5
), p.
051014
.
16.
Brosnan
,
D. A.
, and
Robinson
,
G. C.
,
2003
,
Introduction to Drying of Ceramics
,
The American Ceramic Society
,
Westerville, OH
.
17.
Shular
,
J
.,
1996
, “
The Emission Factor Documentation for AP-42, Section 11.7
,”
Ceramic Products Manufacturing for U.S.
18.
Dugwell
,
D. R.
, and
Oakley
,
D. E.
,
1989
, “
Correlation of Convective Heat Transfer Data for Tunnel Kilns
,”
Ziegelindustrie Int.
,
42
(
10
), pp.
536
545
.
19.
Dugwell
,
D. R.
, and
Oakley
,
D. E.
,
1988
, “
A Model of Heat Transfer in Tunnel Kilns Used for Firing Refractories
,”
Int. J. Heat Mass Transf. Volume
,
31
(
11
), pp.
2381
2390
. 10.1016/0017-9310(88)90169-X
20.
Karaush
,
S. A.
,
Chizhik
,
Y. I.
, and
Bober
,
E. G.
,
1997
, “
Optimization of Ceramic Setting as a Function of Their Heat Absorption From the Radiating Walls of the Furnace
,”
Glass Ceram.
,
54
(
5–6
), pp.
190
192
. 10.1007/BF02767968
21.
Refaey
,
H. A.
,
Abdel-Aziz
,
A. A.
,
Ali
,
R. K.
,
Abdelrahman
,
H. E.
, and
Salem
,
M. R.
,
2017
, “
Augmentation of Convective Heat Transfer in the Cooling Zone of Brick Tunnel Kiln Using Guide Vanes: An Experimental Study
,”
Int. J. Therm. Sci.
,
122
, pp.
172
185
. 10.1016/j.ijthermalsci.2017.08.018
22.
Almutairi
,
J.
,
Alrahmani
,
M.
,
Almesri
,
I.
, and
Abou-Ziyan
,
H.
,
2017
, “
Effect of Fluid Channels on Flow Uniformity in Complex Geometry Similar to Lattice Brick Setting in Tunnel Kilns
,”
Int. J. Mech. Sci.
,
134C
, pp.
28
40
. 10.1016/j.ijmecsci.2017.10.001
23.
Abou-Ziyan
,
H.
,
Alrahmani
,
M.
,
Almesri
,
I.
, and
Almutairi
,
J.
,
2018
, “
Enhancement of Fluid Flow and Heat Transfer in Tunnel Kilns
,”
Int. J. Mech. Prod. Eng.
,
6
(
6
), pp.
63
69
.
24.
Shakti Sustainable Energy Foundation
,
2012
, “
Brick Kilns Performance Assessment—A Roadmap for Cleaner Brick Production in India
,”
Shakti Sustainable Energy Foundation
,
New Delhi, India
. https://www.ccacoalition.org/en/resources/brick-kilns-performance-assessment-roadmap-cleaner-brick-production-india
25.
Oti
,
J.
, and
Kinuthia
,
J.
,
2012
, “
Stabilised Unfired Clay Bricks for Environmental and Sustainable Use
,”
Appl. Clay Sci.
,
58
, pp.
52
59
. 10.1016/j.clay.2012.01.011
26.
Vieira
,
C.
,
Sánchez
,
R.
, and
Monteiro
,
S.
,
2008
, “
Characteristics of Clays and Properties of Building Ceramics in the State of Rio de Janeiro, Brazil
,”
Constr. Build. Mater.
,
25
(
5
), pp.
781
787
. 10.1016/j.conbuildmat.2007.01.006
27.
Ahmari
,
S.
, and
Zhang
,
L.
,
2012
, “
Production of Eco-Friendly Bricks From Copper Mine Tailings Through Geopolymerization
,”
Constr. Build. Mater.
,
29
, pp.
323
331
. 10.1016/j.conbuildmat.2011.10.048
28.
Akinshipe
,
O.
, and
Kornelius
,
G.
,
2017
, “
Chemical and Thermodynamic Processes in Clay Brick Firing Technologies and Associated Atmospheric Emissions Metrics—A Review
,”
J Pollution Effects and Control
,
5
(
2
), p.
190
. 10.4176/2375-4397.1000190
29.
Micheal
H
.,
1996
, “
Energy Efficiency in the South African Clay Brick Industry
”,
Department of Mechanical Engineering, University of Cape Town
,
Rondebosch, South Africa
.
30.
Villiers
D.
,
Mearns
A.
,
1994
, “
The Drying and Firing of Heavy Clay Building Materials: Phase 2—The Conceptual Design and Costing of a Drying/Firing System Using Electricity
”,
Energy Research Institute, University of Cape Town
Report No. CON 162
.
31.
Saleiro
,
G. T.
, and
Holanda
,
J. N. F.
,
2012
, “
Processing of Red Ceramic Using a Fast-Firing Cycle
,”
Cerâmica
,
58
(
347
), pp.
393
399
. 10.1590/S0366-69132012000300018
You do not currently have access to this content.