In this paper, experimental investigation has been performed to characterize the heat transfer behavior of CuO–water and ZnO–water nanofluids. Nanofluids containing different volume percent (vol %) of nanoparticle concentrations flowed over a flat copper plate under a constant heat load. The constant heat flux was maintained using evenly placed cartridge heaters. The heat transfer coefficients of nanofluids were measured and compared with the results obtained from identical experiments performed with de-ionized (DI) water. In order to thoroughly characterize the nanofluids, nanoparticle size was investigated to inspect for possible agglomeration. The particle size was measured by using both a transmission electron microscope (TEM) and a dynamic light scattering system (DLS). Enhancement of convective heat transfer of nanofluids was 2.5–16% depending on the nanoparticle concentrations and Reynolds number. The plausible mechanisms of the enhanced thermal performance of CuO and ZnO nanofluids will be discussed in the following paper.

References

1.
Rennie
,
T. J.
, and
Raghavan
,
V. G. S.
,
2006
, “
Effect of Fluid Thermal Properties on the Heat Transfer Characteristics in a Double-Pipe Helical Heat Exchanger
,”
Int. J. Therm. Sci.
,
45
(
12
), pp.
1158
1165
.
2.
Li
,
W.
,
Paul
,
M. C.
,
Siviter
,
J.
,
Montecucco
,
A.
,
Knox
,
A. R.
,
Sweet
,
T.
,
Min
,
G.
,
Baig
,
H.
,
Mallick
,
T. K.
,
Han
,
G.
,
Gregory
,
D. H.
,
Azough
,
F.
, and
Freer
,
R.
,
2016
, “
Thermal Performance of Two Heat Exchangers for Thermoelectric Generators
,”
Case Stud. Therm. Eng.
,
8
, pp.
164
175
.
3.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds., FED-Vol. 231/MD-Vol. 66,
ASME
,
New York
, pp.
99
105
.
4.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2005
, “
Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,”
Int. J. Therm. Sci.
,
44
(
4
), pp.
367
373
.
5.
Lee
,
J.-H.
,
Hwang
,
K.
,
Jang
,
S.
,
Lee
,
B. H.
,
Kim
,
J. H.
,
Choi
,
S. U. S.
, and
Choi
,
C. J.
,
2008
, “
Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
2651
2656
.
6.
Chen
,
H.
,
Ding
,
Y.
,
He
,
Y.
, and
Tan
,
C.
,
2007
, “
Rheological Behaviour of Ethylene Glycol Based Titania Nanofluids
,”
Chem. Phys. Lett.
,
444
(
4–6
), pp.
333
337
.
7.
Ho
,
C. J.
,
Chang
,
C. Y.
,
Yan
,
W.-M.
, and
Amani
,
P.
,
2018
, “
A Combined Numerical and Experimental Study on the Forced Convection of Al2O3-Water Nanofluid in a Circular Tube
,”
Int. J. Heat Mass Transfer
,
120
, pp.
66
75
.
8.
Ali
,
H. M.
,
Ali
,
H.
,
Liaquat
,
H.
,
Bin Maqsood
,
H. T.
, and
Nadir
,
M. A.
,
2015
, “
Experimental Investigation of Convective Heat Transfer Augmentation for Car Radiator Using ZnO-Water Nanofluids
,”
Energy
,
84
, pp.
317
324
.
9.
Senthil
,
R.
,
2019
, “
Thermal Performance of Aluminum Oxide Based Nanofluids in Flat Plate Solar Collector
,”
Int. J. Eng. Adv. Technol.
,
8
(
3
), pp.
2249
8958
.
10.
Mondragon
,
R.
,
Sanchez
,
D.
,
Cabello
,
R.
,
Llopis
,
R.
, and
Julia
,
J. E.
,
2019
, “
Flat Plate Solar Collector Performance Using Alumina Nanofluids: Experimental Characterization and Efficiency Tests
,”
PLoS One
,
14
(
2
), p.
e0212260
.
11.
Lai
,
W. Y.
,
Vinod
,
S.
,
Phelan
,
P. E.
, and
Prasher
,
R.
,
2009
, “
Convective Heat Transfer for Water-Based Alumina Nanofluids in a Single 1.02-mm Tube
,”
ASME J. Heat Transfer
,
131
(
11
), p.
112401
.
12.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5181
5188
.
13.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
S. G.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
, pp.
203
210
.
14.
He
,
Y.
,
Jin
,
Y.
,
Chen
,
H.
,
Ding
,
Y.
,
Cang
,
D.
, and
Lu
,
H.
,
2007
, “
Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2272
2281
.
15.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
,
2006
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
240
250
.
16.
Torii
,
S.
,
2010
, “
Turbulent Heat Transfer Behavior of Nanofluid in a Circular Tube Heated Under Constant Heat Flux
,”
Adv. Mech. Eng.
,
2
, p.
917612
.
17.
Hassan
,
M. M.
,
Teamah
,
M. A.
, and
El-Maghlany
,
W. M.
,
2017
, “
Numerical Investigation for Heat Transfer Enhancement Using Nanofluids Over Ribbed Confined One-End Closed Flat-Plate
,”
Alexandria Eng. J.
,
56
(
3
), pp.
333
343
.
18.
Sabour
,
M.
, and
Ghalambaz
,
M.
,
2016
, “
The Force Convection Heat Transfer of a Nanofluid Over a Flat Plate: Using the Buongiorno's Model: The Thermophysical Properties as a Function of Nanoparticles
,”
Adv. Energy
,
3
(
1
), pp.
1
20
.
19.
Safaei
,
M. R.
,
Ahmadi
,
G.
,
Goodarzi
,
M. S.
,
Kamyar
,
A.
, and
Kazi
,
S. N.
,
2016
, “
Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids Over a Flat Plate
,”
Fluids
,
1
(
4
), p.
31
.
20.
Zhou
,
S. Q.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
), p.
093123
.
21.
McCants
,
D. A.
,
Ali
,
M. Y.
, and
Khan
,
J.
,
2009
, “
Effective Viscosity Measurement of CuO and ZnO Nanofluid
,” ASME Paper No. MNHMT2009-18492.
22.
Nan
,
C. W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conduction of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
), p.
6692
.
23.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
24.
McCants
,
D. A.
,
2009
, “
Experimental and Numerical Analysis of Convective Heat Transfer Enhancement With Nanofluids Flowing Over a Heated Flat Plate
,” Ph.D. dissertation, University of South Carolina, Columbia, SC.
25.
Faulkner
,
D. J.
,
Rector
,
D. R.
,
Davidson
,
J. J.
, and
Shekarriz
,
R.
,
2004
, “
Enhanced Heat Transfer Through the Use of Nanofluids in Forced Convection
,” ASME Paper No. IMECE2004-62147.
You do not currently have access to this content.