This study involves the effect of adiabatic obstacles on two-dimensional natural convection in a square enclosure using lattice Boltzmann method (LBM). The enclosure embodies square-shaped adiabatic obstacles with one, two, and four in number. The single obstacle in cavity is centrally placed, whereas for other two configurations, a different arrangement has been made such that the core fluid zone is not hampered. The four boundaries of the cavity considered here consist of two adiabatic horizontal walls and two differentially heated vertical walls. The current study covers the range of Rayleigh number (103 ≤ Ra ≤ 106) and a fixed Prandtl number of 0.71 for all cases. The effect of size of obstacle is studied in detail for single obstacle. It is found that the average heat transfer along the hot wall increases with the increase in size of obstacle until it reaches an optimum value and then with further increase in size, the heat transfer rate deteriorates. Study is carried out to delineate the comparison between the presences of obstacle in and out of the conduction dominant zone in the cavity. The number of obstacles (two and four) outside of this core zone shows that heat transfer decreases despite the obstacle being adiabatic in nature.

References

1.
Kruger
,
T.
,
Kusumaatmaja
,
H.
,
Kuzmin
,
A.
,
Shardt
,
O.
,
Silva
,
G.
, and
Viggen
,
E. M.
,
2017
,
The Lattice Boltzmann Method: Principles and Practice
,
Springer International Publishing
, Basel,
Switzerland
.
2.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
282
300
.
3.
Frisch
,
U.
,
Hasslacher
,
B.
, and
Pomeau
,
Y.
,
1986
, “
Lattice-Gas Automata for the Navier-Stokes Equations
,”
Phys. Rev. Lett.
,
56
(
14
), pp.
1505
1508
.
4.
Sthavishtha
,
B. R.
,
Perumal
,
D. A.
, and
Yadav
,
A. K.
,
2018
, “
Computation of Fluid Flow in Double Sided Cross-Shaped Lid-Driven Cavities Using Lattice Boltzmann Method
,”
Eur. J. Mech.—B/Fluids
,
70
, pp.
46
72
.
5.
Succi
,
S.
,
Santangelo
,
P.
, and
Benzi
,
R.
,
1988
, “
High-Resolution Lattice-Gas Simulation of Two-Dimensional Turbulence
,”
Phys. Rev. Lett.
,
60
(
26
), pp.
2738
2740
.
6.
Martinez
,
D. O.
,
Chen
,
S.
, and
Matthaeus
,
W.
,
1994
, “
Lattice Boltzmann Magnetohydrodynamics
,”
Phys. Rev. E
,
47
(
4
), pp.
R2249
R2252
.
7.
Martys
,
N. S.
, and
Chen
,
H.
,
1996
, “
Simulation of Multicomponent Fluids in Complex Three Dimensional Geometries by the Lattice Boltzmann Method
,”
Phys. Rev. E
,
53
(
1
), pp.
743
750
.
8.
Martys
,
N. S.
, and
Douglas
,
F. F.
,
2001
, “
Critical Properties and Phase Separation in Lattice Boltzmann Fluid Mixtures
,”
Phys. Rev. E
,
63
(3), p. 031205.
9.
Massaioli
,
F.
,
Benzi
,
R.
, and
Succi
,
S.
,
1993
, “
Exponential Tails in Two-Dimensional Rayleigh-Benard Convection
,”
Europhys. Lett.
,
21
(
3
), pp.
305
310
.
10.
Dixit
,
H. N.
, and
Babu
,
V.
,
2006
, “
Simulation of High Rayleigh Number Natural Convection in a Square Cavity Using the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
727
739
.
11.
Braga
,
E. J.
, and
de Lemos
,
M. J. S.
,
2005
, “
Heat Transfer in Cavities Having a Fixed Amount of Solid Material
,”
ASME
Paper No. HT2005-72719.
12.
Mousa
,
M. M.
,
2016
, “
Modeling of Laminar Buoyancy Convection in a Square Cavity Containing an Obstacle
,”
Bull. Malaysian Math. Sci. Soc.
,
39
(
2
), pp.
483
498
.
13.
Regulski
,
W.
, and
Szumbarski
,
J.
,
2012
, “
Numerical Simulation of Confined Flows Past Obstacles—The Comparative Study of Lattice Boltzmann and Spectral Element Methods
,”
Arch. Mech.
,
64
(4), pp.
423
456
.http://am.ippt.pan.pl/am/article/view/v64p423
14.
Bhave
,
P.
,
Narasimhan
,
A.
, and
Rees
,
D. A. S.
,
2006
, “
Natural Convection Heat Transfer Enhancement Using Adiabatic Block: Optimal Block Size and Prandtl Number Effect
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
3807
3818
.
15.
Merrikh
,
A. A.
, and
Mohamad
,
A. A.
,
2001
, “
Blockage Effects in Natural Convection in Differentially Heated Enclosure
,”
J. Enhanced Heat Transfer
,
8
(
1
), pp.
55
72
.
16.
House
,
J. M.
,
Beckermann
,
C.
, and
Smith
,
T. F.
,
1990
, “
Effect of a Centered Conducting Body on Natural Convection Heat Transfer in an Enclosure
,”
Numer. Heat Transfer Part A
,
18
(
2
), pp.
213
225
.
17.
Xu
,
F.
,
Patterson
,
J. C.
, and
Lei
,
C.
,
2006
, “
Experimental Observations of the Thermal Flow Around a Square Obstruction on a Vertical Wall in a Differentially Heated Cavity
,”
Exp. Fluids
,
40
(
3
), pp.
364
371
.
18.
Merrikh
,
A. A.
,
Lage
,
J. L.
, and
Mohamad
,
A. A.
,
2002
, “
Comparison Between Pore Level and Porous Medium Model for Natural Convection in a Nonhomogeneous Enclosure
,”
Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment
,
Z.
Chen
and
R. E.
Ewing
, eds., American Mathematical Society, Providence, RI, pp.
387
396
.
19.
David
,
E.
, and
Lauriat
,
G.
,
1989
, “
Analogy Between Wall Channeling Effects in Porous Media and Thermal Convection Loops
,”
Numer. Methods Therm. Probl.
,
6
, pp.
476
486
.
20.
Roslan
,
R.
,
Saleh
,
H.
, and
Hashim
,
I.
,
2014
, “
Natural Convection in a Differentially Heated Square Enclosure With a Solid Polygon
,”
Sci. World J.
,
2014
, p. 617492.
21.
Ha
,
M. Y.
,
Kim
,
I.-K.
, and
Yoon
,
H. S.
,
2002
, “
Two-Dimensional and Unsteady Natural Convection in a Horizontal Enclosure With a Square Body
,”
Numer. Heat Transfer A: Appl.
,
41
(
2
), pp.
183
210
.
22.
Hussain
,
S. H.
, and
Hussein
,
A. K.
,
2011
, “
Mixed Convection Heat Transfer in a Differentially Heated Square Enclosure With a Conductive Rotating Circular Cylinder at Different Vertical Locations
,”
Int. Commun. Heat Mass Transfer
,
38
(
2
), pp.
263
274
.
23.
De Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Benchmark Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
.
24.
Mohamad
,
A. A.
,
2011
,
Lattice Boltzmann Method, Fundamentals and Engineering Applications With Computer Codes
, Springer,
London
.
You do not currently have access to this content.