Nanoparticle dispersions or more popularly “nanofluids” have been extensively researched for their candidature as working fluid in direct-volumetric-absorption solar thermal systems. Flexibility in carving out desired thermophysical and optical properties has lend the nanofluids to be engineered for solar thermal and photovoltaic applications. The key feature which delineates nanofluid-based direct absorption volumetric systems from their surface absorption counterparts is that here the working fluid actively (directly) interacts with the solar irradiation and hence enhances the overall heat transfer of the system. In this work, a host of nanoparticle materials have been evaluated for their solar-weighted absorptivity and heat transfer enhancements relative to the basefluid. It has been found that solar-weighted absorptivity is the key feature that makes nanoparticle dispersions suitable for solar thermal applications (maximum enhancement being for the case of amorphous carbon nanoparticles). Subsequently, thermal conductivity measurements reveal that enhancements on the order of 1–5% could only be achieved through addition of nanoparticles into the basefluid. Furthermore, dynamic light scattering (DLS) and optical measurements (carried out for as prepared, 5 h old and 24 h old samples) reveal that nanoclustering and hence soft agglomeration does happen but it does not have significant impact on optical properties of the nanoparticles. Finally, as a proof-of-concept experiment, a parabolic trough collector employing the amorphous carbon-based nanofluid and distilled water has been tested under the sun. These experiments have been carried out at no flow condition so that appreciable temperatures could be reached in less time. It was found that for the same exposure time, increase in the temperature of amorphous carbon based nanofluid is approximately three times higher as compared to that in the case of distilled water.

References

1.
Phelan
,
P.
,
Otanicar
,
T.
,
Taylor
,
R.
, and
Tyagi
,
H.
,
2013
, “
Trends and Opportunities in Direct-Absorption Solar Thermal Collectors
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021003
.
2.
Taylor
,
R.
,
Coulombe
,
S.
,
Otanicar
,
T.
,
Phelan
,
P.
,
Gunawan
,
A.
,
Lv
,
W.
,
Rosengarten
,
G.
,
Prasher
,
R.
, and
Tyagi
,
H.
,
2013
, “
Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids
,”
J. Appl. Phys.
,
113
(
1
), p. 011301.
3.
Veeraragavan
,
A.
,
Lenert
,
A.
,
Yilbas
,
B.
,
Al-Dini
,
S.
, and
Wang
,
E. N.
,
2012
, “
Analytical Model for the Design of Volumetric Solar Flow Receivers
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
556
564
.
4.
Hewakuruppu
,
Y. L.
,
Taylor
,
R. A.
,
Tyagi
,
H.
,
Khullar
,
V.
,
Otanicar
,
T.
,
Coulombe
,
S.
, and
Hordy
,
N.
,
2015
, “
Limits of Selectivity of Direct Volumetric Solar Absorption
,”
Sol. Energy
,
114
, pp.
206
216
.
5.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Adrian
,
R.
, and
Prasher
,
R.
,
2011
, “
Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
225
.
6.
Khullar
,
V.
,
Tyagi
,
H.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Singh
,
H.
, and
Taylor
,
R. A.
,
2013
, “
Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
3
), p.
031003
.
7.
Khullar
,
V.
,
2014
, “
Heat Transfer Analysis and Optical Characterization of Nanoparticle Dispersion-Based Solar Thermal Systems
,”
Ph.D. thesis
, Indian Institute of Technology Ropar, Rupnagar, India.http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/758
8.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Taylor
,
R. A.
, and
Tyagi
,
H.
,
2011
, “
Spatially Varying Extinction Coefficient for Direct Absorption Solar Thermal Collector Optimization
,”
ASME J. Sol. Energy Eng.
,
133
(
2
), p.
024501
.
9.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2009
, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041004
.
10.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Prasher
,
R. S.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
,
2010
, “
Nanofluid-Based Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033102
.
11.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Walker
,
C. A.
,
Nguyen
,
M.
,
Trimble
,
S.
, and
Prasher
,
R.
,
2011
, “
Applicability of Nanofluids in High Flux Solar Collectors
,”
J. Renewable Sustainable Energy
,
3
(
2
), p.
023104
.
12.
Lv
,
W.
,
Phelan
,
P. E.
,
Swaminathan
,
R.
,
Otanicar
,
T. P.
, and
Taylor
,
R. A.
,
2012
, “
Multifunctional Core-Shell Nanoparticle Suspensions for Efficient Absorption
,”
ASME J. Sol. Energy Eng.
,
135
(
2
), p.
021004
.
13.
Lee
,
B. J.
,
Park
,
K.
,
Walsh
,
T.
, and
Xu
,
L.
,
2012
, “
Radiative Heat Transfer Analysis in Plasmonic Nanofluids for Direct Solar Thermal Absorption
,”
ASME J. Sol. Energy Eng.
,
134
(
2
), p.
021009
.
14.
Xuan
,
Y.
,
Li
,
Q.
, and
Duan
,
H.
,
2014
, “
Enhancement of Solar Energy Absorption Using a Plasmonic Nanofluid Based on Tio2/Ag Composite Nanoparticles
,”
RSC Adv.
,
4
(
31
), pp.
16206
16213
.
15.
Khullar
,
V.
,
Tyagi
,
H.
,
Otanicar
,
T.
,
Hewakuruppu
,
Y.
, and
Taylor
,
R.
,
2016
, “
Solar Selective Volumetric Receivers for Harnessing Solar Thermal Energy
,”
ASME
Paper No. IMECE2016-66599.
16.
Otanicar
,
T.
,
Hoyt
,
J.
,
Fahar
,
M.
,
Jiang
,
X.
, and
Taylor
,
R. A.
,
2013
, “
Experimental and Numerical Study on the Optical Properties and Agglomeration of Nanoparticle Suspensions
,”
J. Nanopart. Res.
,
15
(
11
), pp. 1–11.
17.
Karami
,
M.
,
Akhavan Bahabadi
,
M. A.
,
Delfani
,
S.
, and
Ghozatloo
,
A.
,
2014
, “
A New Application of Carbon Nanotubes Nanofluid as Working Fluid of Low-Temperature Direct Absorption Solar Collector
,”
Sol. Energy Mater. Sol. Cells
,
121
, pp.
114
118
.
18.
Hordy
,
N.
,
Rabilloud
,
D.
,
Meunier
,
J. L.
, and
Coulombe
,
S.
,
2014
, “
High Temperature and Long-Term Stability of Carbon Nanotube Nanofluids for Direct Absorption Solar Thermal Collectors
,”
Sol. Energy
,
105
, pp.
82
90
.
19.
Sani
,
E.
,
Mercatelli
,
L.
,
Barison
,
S.
,
Pagura
,
C.
,
Agresti
,
F.
,
Colla
,
L.
, and
Sansoni
,
P.
,
2011
, “
Potential of Carbon Nanohorn-Based Suspensions for Solar Thermal Collectors
,”
Sol. Energy Mater. Sol. Cells
,
95
(
11
), pp.
2994
3000
.
20.
Khullar
,
V.
,
Tyagi
,
H.
,
Hordy
,
N.
,
Otanicar
,
T. P.
,
Hewakuruppu
,
Y.
,
Modi
,
P.
, and
Taylor
,
R. A.
,
2014
, “
Harvesting Solar Thermal Energy Through Nanofluid-Based Volumetric Absorption Systems
,”
Int. J. Heat Mass Transfer
,
77
, pp.
377
384
.
21.
Chen
,
M.
,
He
,
Y.
,
Zhu
,
J.
,
Shuai
,
Y.
,
Jiang
,
B.
, and
Huang
,
Y.
,
2015
, “
An Experimental Investigation on Sunlight Absorption Characteristics of Silver Nanofluids
,”
Sol. Energy
,
115
, pp.
85
94
.
22.
Han
,
D.
,
Meng
,
Z.
,
Wu
,
D.
,
Zhang
,
C.
, and
Zhu
,
H.
,
2011
, “
Thermal Properties of Carbon Black Aqueous Nanofluids for Solar Absorption
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
7
.
23.
He
,
Q.
,
Wang
,
S.
,
Zeng
,
S.
, and
Zheng
,
Z.
,
2013
, “
Experimental Investigation on Photothermal Properties of Nanofluids for Direct Absorption Solar Thermal Energy Systems
,”
Energy Convers. Manage.
,
73
, pp.
150
157
.
24.
Bandarra Filho
,
E. P.
,
Mendoza
,
O. S. H.
,
Beicker
,
C. L. L.
,
Menezes
,
A.
, and
Wen
,
D.
,
2014
, “
Experimental Investigation of a Silver Nanoparticle-Based Direct Absorption Solar Thermal System
,”
Energy Convers. Manage.
,
84
, pp.
261
267
.
25.
Zhang
,
H.
,
Chen
,
H. J.
,
Du
,
X.
, and
Wen
,
D.
,
2014
, “
Photothermal Conversion Characteristics of Gold Nanoparticle Dispersions
,”
Sol. Energy
,
100
, pp.
141
147
.
26.
Chen
,
M.
,
He
,
Y.
,
Zhu
,
J.
, and
Kim
,
D. R.
,
2016
, “
Enhancement of Photo-Thermal Conversion Using Gold Nanofluids With Different Particle Sizes
,”
Energy Convers. Manage.
,
112
, pp.
21
30
.
27.
Ladjevardi
,
S. M.
,
Asnaghi
,
A.
,
Izadkhast
,
P. S.
, and
Kashani
,
A. H.
,
2013
, “
Applicability of Graphite Nanofluids in Direct Solar Energy Absorption
,”
Sol. Energy
,
94
, pp.
327
334
.
28.
Lenert
,
A.
, and
Wang
,
E. N.
,
2012
, “
Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion
,”
Sol. Energy
,
86
(
1
), pp.
253
265
.
29.
Liu
,
J.
,
Ye
,
Z.
,
Zhang
,
L.
,
Fang
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Combined Numerical and Experimental Study on Graphene/Ionic Liquid Nanofluid Based Direct Absorption Solar Collector
,”
Sol. Energy Mater. Sol. Cells
,
136
, pp.
177
186
.
30.
Vijayaraghavan
,
S.
,
Ganapathisubbu
,
S.
, and
Santosh Kumar
,
C.
,
2013
, “
Performance Analysis of a Spectrally Selective Concentrating Direct Absorption Collector
,”
Sol. Energy
,
97
, pp.
418
425
.
31.
Luo
,
Z.
,
Wang
,
C.
,
Wei
,
W.
,
Xiao
,
G.
, and
Ni
,
M.
,
2014
, “
Performance Improvement of a Nanofluid Solar Collector Based on Direct Absorption Collection (DAC) Concepts
,”
Int. J. Heat Mass Transfer
,
75
, pp.
262
271
.
32.
Otanicar
,
T. P.
,
Phelan
,
P. E.
, and
Golden
,
J. S.
,
2009
, “
Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems
,”
Sol. Energy
,
83
(
7
), pp.
969
977
.
33.
Kameya
,
Y.
, and
Hanamura
,
K.
,
2011
, “
Enhancement of Solar Radiation Absorption Using Nanoparticle Suspension
,”
Sol. Energy
,
85
(
2
), pp.
299
307
.
34.
Querry
,
M. R.
,
1987
, “
Optical Constants of Minerals and Other Materials From the Millimeter to the Ultraviolet
,” US Army, Aberdeen, MD, Report No.
CRDEC-CR-88009
.http://www.dtic.mil/dtic/tr/fulltext/u2/a192210.pdf
35.
Hale
,
G. M.
, and
Querry
,
M. R.
,
1973
, “
Optical Constants of Water in the 200-Nm to 200-Microm Wavelength Region
,”
Appl. Opt.
,
12
(
3
), pp.
555
563
.
36.
Harrick
,
N. J.
, and
du Pré
,
F. K.
,
1966
, “
Effective Thickness of Bulk Materials and of Thin Films for Internal Reflection Spectroscopy
,”
Appl. Opt.
,
5
(
11
), pp. 1739–1743.
37.
Drotning
,
W. D.
,
1978
, “
Optical Properties of Solar-Absorbing Oxide Particles Suspended in a Molten Salt Heat Transfer Fluid
,”
Sol. Energy
,
20
(
4
), pp.
313
319
.
You do not currently have access to this content.