Abstract

Because of the low accuracy of fuzzy image target recognition, an algorithm of fuzzy image target recognition based on visual similarity was researched. First, the method of adaptive weighted mean threshold was used to deal with fuzzy images, and then the adaptive threshold was obtained by a full scan of a fuzzy image. Second, the pixel point enhancement equation was established. Moreover, the new gradient operator used the points after filtering enhancement to reconstruct pixels and obtain the deblurred image. In addition, the visual similarity method was used to extract target features of the deblurred image, and then the color image was converted to a relatively uniform color space. On the basis of visual spatial response characteristics, brightness, contrast function, and chroma were used to adjust the image and thus to obtain the structure similarity index of each dimension image. By comprehensively considering the information of each dimension in color space, the structure similarity index was used to extract the image target features. Finally, the support vector machine model learned the target feature samples. Experimental results show that the proposed algorithm can effectively identify the fuzzy image target.

References

1.
Pei
H.
,
Yang
X.
, and
Huo
L.
, “
Infrared Image Detection of Double Circuit UHV Transmission Lines on the Same Tower
” (in Chinese),
Journal of China Academy of Electronics and Information Technology
14
, no. 
2
(February
2019
):
212
217
, https://doi.org/10.3969/j.issn.1673-5692.2019.02.018
2.
Wang
Q. Q.
,
Zheng
L. G.
, and
Meng
J. N.
, “
Road Recognition and Motion Target Tracking Based on Infrared Image
,”
International Journal of Wireless and Mobile Computing
20
, no. 
2
(
2021
):
107
119
, https://doi.org/10.1504/IJWMC.2021.114125
3.
Guo
S.
,
Liu
F.
,
Yuan
X.
,
Zou
C.
, and
Shen
T.
, “
HSPOG: An Optimized Target Recognition Method Based on Histogram of Spatial Pyramid Oriented Gradients
,”
Tsinghua Science and Technology
26
, no. 
4
(August
2021
):
475
483
, https://doi.org/10.26599/TST.2020.9010011
4.
Wang
M.
and
Deng
W.
, “
Deep Face Recognition with Clustering Based Domain Adaptation
,”
Neurocomputing
393
(June
2020
):
1
14
, https://doi.org/10.1016/j.neucom.2020.02.005
5.
Sun
J.
,
Zhao
Y.
, and
Wang
S.
, “
Improvement of SIFT Feature Matching Algorithm Based on Image Gradient Information Enhancement
” (in Chinese),
Journal of Jilin University (Science Edition)
2018
, no. 
1
(January
2018
):
82
88
, https://doi.org/10.13413/j.cnki.jdxblxb.2018.01.14
6.
Yue
P.
,
Zhao
L.
, and
Zhang
W.
, “
Visual Image Special Target Detection Simulation of Low Pixel Monitoring System
” (in Chinese),
Jisuanji Fangzhen
35
, no. 
7
(July
2018
):
452
455
, https://doi.org/10.3969/j.issn.1006-9348.2018.07.099
7.
Zhang
J.
,
Yin
Z.
, and
Wang
R.
, “
Recognition of Mental Workload Levels under Complex Human–Machine Collaboration by Using Physiological Features and Adaptive Support Vector Machines
,”
IEEE Transactions on Human-Machine Systems
45
, no. 
2
(April
2015
):
200
214
, https://doi.org/10.1109/THMS.2014.2366914
8.
Chen
S.
,
Gu
H.
,
Tu
M.
,
Zhou
Y.
, and
Cui
Y.
, “
Robust Variable Selection Based on Bagging Classification Tree for Support Vector Machine in Metabonomic Data Analysis
,”
Journal of Chemometrics
32
, no. 
11
(November
2018
): e2921, https://doi.org/10.1002/cem.2921
9.
Lazarov
A.
and
Minchev
C.
, “
ISAR Image Recognition Algorithm and Neural Network Implementation
,”
Cybernetics and Information Technologies
17
, no. 
4
(November
2017
):
183
199
, https://doi.org/10.1515/cait-2017-0048
10.
Sun
W.
,
Liao
Q.
,
Xue
J. H.
, and
Zhou
F.
, “
SPSIM: A Superpixel-Based Similarity Index for Full-Reference Image Quality Assessment
,”
IEEE Transactions on Image Processing
27
, no. 
9
(September
2018
):
4232
4244
, https://doi.org/10.1109/TIP.2018.2837341
11.
Xie
H.
,
Tian
G.
,
Du
G.
,
Huang
Y.
,
Chen
H.
,
Zheng
X.
, and
Luan
T. H.
, “
A Hybrid Method Combining Markov Prediction and Fuzzy Classification for Driving Condition Recognition
,”
IEEE Transactions on Vehicular Technology
67
, no. 
11
(November
2018
):
10411
10424
, https://doi.org/10.1109/TVT.2018.2868965
12.
Xia
Y.
,
Shang
Y.
,
Zhang
R.
, and
Zhu
J.
, “
Structure of the PSD-95/MAP1A Complex Reveals a Unique Target Recognition Mode of the MAGUK GK Domain
,”
The Biochemical Journal
474
, no. 
16
(August
2017
):
2817
2828
, https://doi.org/10.1042/BCJ20170356
13.
Li
Z.
,
Ma
C.
, and
Zhang
T.
, “
Depth Data Reconstruction Based on Gaussian Mixture Model
,”
Cybernetics and Information Technologies
16
, no. 
6
(December
2016
):
207
219
, https://doi.org/10.1515/cait-2016-0089
14.
Gao
Z.
,
Yang
M.
, and
Xie
C.
, “
Space Target Image Fusion Method Based on Image Clarity Criterion
,”
Optical Engineering
56
, no. 
5
(May
2017
): 053102, https://doi.org/10.1117/1.OE.56.5.053102
15.
Göksu
H.
, “
Ground Moving Target Recognition Using Log Energy Entropy of Wavelet Packets
,”
Electronics Letters
54
, no. 
4
(February
2018
):
233
235
, https://doi.org/10.1049/el.2017.4267
16.
Körner
C.
,
Simoneau
C. R.
,
Schommers
P.
,
Granoff
M.
,
Ziegler
M.
,
Hölzemer
A.
,
Lunemann
S.
, et al., “
HIV-1-Mediated Downmodulation of HLA-C Impacts Target Cell Recognition and Antiviral Activity of NK Cells
,”
Cell Host & Microbe
22
, no. 
1
(July
2017
): 111–119.e4, https://doi.org/10.1016/j.chom.2017.06.008
17.
Tran
H. L.
,
Pham
V. N.
, and
Vuong
H. N.
, “
Multiple Neural Network Integration Using a Binary Decision Tree to Improve the ECG Signal Recognition Accuracy
,”
International Journal of Applied Mathematics and Computer Science
24
, no. 
3
(September
2014
):
647
655
, https://doi.org/10.2478/amcs-2014-0047
18.
Zhao
Y.
, “
Design and Application of an Adaptive Slow Feature Extraction Algorithm for Natural Images Based on Visual Invariance
,”
Traitement du Signal
36
, no. 
3
(
2019
):
209
216
, https://doi.org/10.18280/ts.360302.
19.
Chakraborty
S.
,
Paul
D.
,
Baral
S.
,
Mu
H.
,
Steinbach
P. J.
,
Broyde
S.
,
Min
J.-H.
, and
Ansari
A.
, “
Visualizing Spontaneous DNA Dynamics and Its Role in Mismatch Recognition by Damage Recognition Protein Rad4
,”
Biophysical Journal
114
, no. 
3
(February
2018
):
85
90
, https://doi.org/10.1016/j.bpj.2017.11.507
20.
Samanipour
S.
,
Reid
M. J.
,
Bæk
K.
, and
Thomas
K. V.
, “
Combining a Deconvolution and a Universal Library Search Algorithm for the Nontarget Analysis of Data-Independent Acquisition Mode Liquid Chromatography−High-Resolution Mass Spectrometry Results
,”
Environmental Science & Technology
52
, no. 
8
(March
2018
):
4694
4701
, https://doi.org/10.1021/acs.est.8b00259
21.
Chang
Y.
,
Zhu
X.
, and
Haghani
A.
, “
Modeling and Solution of Joint Storage Space Allocation and Handling Operation for Outbound Containers in Rail-Water Intermodal Container Terminals
,”
IEEE Access
7
(
2019
):
55142
55158
, https://doi.org/10.1109/ACCESS.2019.2913019
22.
Virk
A. U. R.
,
Abbas
T.
, and
Khalid
W.
, “
Multiplicative Topological Descriptors of Silicon Carbide
,”
Applied Mathematics and Nonlinear Sciences
4
, no. 
1
(January
2019
):
181
190
, https://doi.org/10.2478/AMNS.2019.1.00018
23.
Xiong
Z.
,
Wu
Y.
,
Ye
C.
,
Zhang
X.
, and
Xu
F.
, “
Color Image Chaos Encryption Algorithm Combining CRC and Nine Palace Map
,”
Multimedia Tools and Applications
78
(
2019
):
31035
31055
, https://doi.org/10.1007/s11042-018-7081-3
24.
Yong
Q.
,
Luo
Y. Y.
,
Zhao
Y.
, and
Zhang
J.
, “
Research on Relationship between Tourism Income and Economic Growth Based on Meta-Analysis
,”
Applied Mathematics and Nonlinear Sciences
3
, no. 
1
(June
2018
):
105
114
, https://doi.org/10.21042/AMNS.2018.1.00008
25.
Cao
B.
,
Zhao
J. W.
,
Lv
Z. H.
,
Gu
Y.
,
Yang
P.
, and
Halgamuge
S. K.
, “
Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction
,”
IEEE Transactions on Fuzzy Systems
28
, no. 
5
(May
2020
):
939
952
, https://doi.org/10.1109/TFUZZ.2020.2972207
26.
Liu
Y.
,
Yang
C.
, and
Sun
Q.
, “
Thresholds Based Image Extraction Schemes in Big Data Environment in Intelligent Traffic Management
,”
IEEE Transactions on Intelligent Transportation Systems
22
, no. 
7
(July
2021
):
3952
3960
, https://doi.org/10.1109/TITS.2020.2994386
27.
Lv
Q.
,
Liu
H.
,
Wang
J.
,
Liu
H.
, and
Shang
Y.
, “
Multiscale Analysis on Spatiotemporal Dynamics of Energy Consumption CO2 Emissions in China: Utilizing the Integrated of DMSP-OLS and NPP-VIIRS Nighttime Light Datasets
,”
Science of the Total Environment
703
(February
2020
): 134394, https://doi.org/10.1016/j.scitotenv.2019.134394
28.
Fu
X. W.
,
Fortino
G.
,
Li
W. F.
,
Pace
P.
, and
Yang
Y.
, “
WSNs-Assisted Opportunistic Network for Low-Latency Message Forwarding in Sparse Settings
,”
Future Generation Computer Systems
91
(February
2019
):
223
237
, https://doi.org/10.1016/j.future.2018.08.031
29.
Xiong
Z. G.
,
Tang
Z. W.
,
Chen
X. W.
,
Zhang
X.
,
Zhang
K.
, and
Ye
C.
, “
Research on Image Retrieval Algorithm Based on Combination of Color and Shape Features
,”
Journal of Signal Processing Systems
93
, nos. 
2–3
(March
2021
):
139
146
, https://doi.org/10.1007/s11265-019-01508-y
30.
Mi
C.
,
Cao
L.
,
Zhang
Z.
,
Feng
Y.
,
Yao
L.
, and
Wu
Y.
, “
A Port Container Code Recognition Algorithm under Natural Condition
s,”
Journal of Coastal Research
103
, no. 
sp1
(Summer
2020
):
822
829
, https://doi.org/10.2112/SI103-170.1
This content is only available via PDF.
You do not currently have access to this content.