Abstract

This paper proposes an advanced system for optimizing indoor environmental quality (IEQ) in office environments that integrates fixed sensors with a mobile measuring robot (MMR). A demand-based measurement strategy that uses human detection and predictive analytics via machine learning is used to enhance data collection accuracy and efficiency. The system incorporates voice notifications to prompt occupants to perform actions that improve IEQ. The MMR’s operational capabilities and coordination with fixed sensors allow the system to achieve high precision and efficiency in office environments. The system’s effectiveness is validated through empirical studies (two preliminary experiments and two main experiments) in real office settings. The first preliminary experiment identified measurement blind spots and the second preliminary experiment tested the equivalence of environmental measurements between the MMR and fixed sensors. The first main experiment showed the system’s human detection function for efficient and precise environmental measurement and the voice notification function for prompting occupants to perform actions that improve IEQ. The second main experiment showed the system’s predictive accuracy in forecasting CO2 levels using neural network models. The main experiments demonstrate that the system can effectively guide MMR operations, reduce measurement times, and accurately predict environmental changes. The proposed system is a comprehensive solution for IEQ enhancement in office buildings.

References

1.
Seppanen
,
O. A.
, and
Fisk
,
W.
,
2006
, “
Some Quantitative Relations Between Indoor Environmental Quality and Work Performance or Health
,”
HVAC R Res.
,
12
(
4
), pp.
957
973
.
2.
Arif
,
M.
,
Katafygiotou
,
M.
,
Mazroei
,
A.
,
Kaushik
,
A.
, and
Elsarrag
,
E.
,
2016
, “
Impact of Indoor Environmental Quality on Occupant Well-Being and Comfort: A Review of the Literature
,”
Int. J. Sustain. Built Environ.
,
5
(
1
), pp.
1
11
.
3.
Ebi
,
K. L.
,
Capon
,
A.
,
Berry
,
P.
,
Broderick
,
C.
,
de Dear
,
R.
,
Havenith
,
G.
,
Honda
,
Y.
, et al.,
2021
, “
Hot Weather and Heat Extremes: Health Risks
,”
Lancet
,
398
(
10301
), pp.
698
708
.
4.
Vergerio
,
G.
, and
Becchio
,
C.
,
2022
, “
Pursuing Occupants’ Health and Well-Being in Building Management: Definition of New Metrics Based on Indoor Air Parameters
,”
Build. Environ.
,
223
, p.
109447
.
5.
Yun
,
H.
,
Yang
,
J.
,
Lee
,
B.
,
Kim
,
J.
, and
Sohn
,
J.-R.
,
2020
, “
Indoor Thermal Environment Long-Term Data Analytics Using IoT Devices in Korean Apartments: A Case Study
,”
Int. J. Environ. Res. Public Health
,
17
(
19
), p.
7334
.
6.
Pang
,
Z.
,
Becerik-Gerber
,
B.
,
Hoque
,
S.
,
O’Neill
,
Z.
,
Pedrielli
,
G.
,
Wen
,
J.
, and
Wu
,
T.
,
2021
, “
How Work From Home Has Affected the Occupant’s Well-Being in the Residential Built Environment: An International Survey Amid the Covid-19 Pandemic
,”
ASME J. Eng. Sustain. Bldgs. Cities
,
2
(
4
), p.
041003
.
7.
Al horr
,
Y.
,
Arif
,
M.
,
Katafygiotou
,
M.
,
Mazroei
,
A.
,
Kaushik
,
A.
, and
Elsarrag
,
E.
,
2016
, “
Impact of Indoor Environmental Quality on Occupant Well-Being and Comfort: A Review of the Literature
,”
Int. J. Sustain. Built Environ.
,
5
(
1
), pp.
1
11
.
8.
Verma
,
A.
,
Gupta
,
V.
,
Nihar
,
K.
,
Jana
,
A.
,
Jain
,
R. K.
, and
Deb
,
C.
,
2023
, “
Tropical Climates and the Interplay Between IEQ and Energy Consumption in Buildings: A Review
,”
Build. Environ.
,
242
, p.
110551
.
9.
Awada
,
M.
,
Becerik-Gerber
,
B.
,
Hoque
,
S.
,
O’Neill
,
Z.
,
Pedrielli
,
G.
,
Wen
,
J.
, and
Wu
,
T.
,
2021
, “
Ten Questions Concerning Occupant Health in Buildings During Normal Operations and Extreme Events Including the COVID-19 Pandemic
,”
Build. Environ.
,
188
, p.
107480
.
10.
Yan
,
S.
,
Wang
,
L.
,
Birnkrant
,
M. J.
,
Zhai
,
J.
, and
Miller
,
S. L.
,
2022
, “
Evaluating SARS-CoV-2 Airborne Quanta Transmission and Exposure Risk in a Mechanically Ventilated Multizone Office Building
,”
Build. Environ.
,
219
, p.
109184
.
11.
Tang
,
H.
,
Yu
,
J.
,
Geng
,
Y.
,
Wang
,
Z.
,
Liu
,
X.
,
Huang
,
Z.
, and
Lin
,
B.
,
2023
, “
Unlocking Ventilation Flexibility of Large Airport Terminals Through an Optimal CO2-Based Demand-Controlled Ventilation Strategy
,”
Build. Environ.
,
244
, p.
110808
.
12.
Tang
,
H.
,
Yu
,
J.
,
Geng
,
Y.
,
Wang
,
Z.
,
Liu
,
X.
, and
Lin
,
B.
,
2023
, “
Optimization of Operational Strategy for Ice Thermal Energy Storage in a District Cooling System Based on Model Predictive Control
,”
J. Energy Storage
,
62
, p.
106872
.
13.
Francesco
,
S.
,
Seyed
,
M. H.
,
Lidia
,
B.
,
Fiore
,
C.
,
Simonetta
,
G.
,
Veronica
,
A.
, and
Gigliola
,
A.
,
2024
, “
Light-Responsive Kinetic Façade System Inspired by the Gazania Flower: A Biomimetic Approach in Parametric Design for Daylighting
,”
Build. Environ.
,
247
, p.
111052
.
14.
Kastner
,
W.
,
Neugschwandtner
,
G.
,
Soucek
,
S.
, and
Newman
,
H.
,
2005
, “
Communication Systems for Building Automation and Control
,”
Proc. IEEE
,
93
(
6
), pp.
1178
1203
.
15.
Wong
,
J. K.
,
Li
,
H.
, and
Wang
,
S. W.
,
2005
, “
Intelligent Building Research: A Review
,”
Autom. Constr.
,
14
(
1
), pp.
143
159
.
16.
Cheng
,
C.
, and
Lee
,
D.
,
2018
, “
Return on Investment of Building Energy Management System: a Review
,”
Int. J. Energy Res.
,
42
(
13
), pp.
4034
4053
.
17.
Vandenbogaerde
,
L.
,
Verbeke
,
S.
, and
Audenaert
,
A.
,
2023
, “
Optimizing Building Energy Consumption in Office Buildings: A Review of Building Automation and Control Systems and Factors Influencing Energy Savings
,”
J. Build. Eng.
,
76
, p.
107233
.
18.
Geng
,
Y.
,
Zhang
,
Z.
,
Yu
,
J.
,
Chen
,
H.
,
Zhou
,
H.
,
Lin
,
B.
, and
Zhuang
,
W.
,
2022
, “
An Intelligent IEQ Monitoring and Feedback System: Development and Applications
,”
Engineering
,
18
, pp.
218
231
.
19.
Feng
,
Y.
,
Wang
,
J.
,
Wang
,
N.
, and
Chen
,
C.
,
2023
, “
Alert-Based Wearable Sensing System for Individualized Thermal Preference Prediction
,”
Build. Environ.
,
232
, p.
110047
.
20.
Chaudhuri
,
T.
,
Soh
,
Y. C.
,
Li
,
H.
, and
Xie
,
L.
,
2019
, “
A Feedforward Neural Network Based Indoor-Climate Control Framework for Thermal Comfort and Energy Saving in Buildings
,”
Appl. Energy
,
248
, pp.
44
53
.
21.
Sanguinetti
,
A.
,
Pritoni
,
M.
,
Salmon
,
K.
,
Meier
,
A.
, and
Morejohn
,
J.
,
2017
, “
Upscaling Participatory Thermal Sensing: Lessons From an Interdisciplinary Case Study at University of California for Improving Campus Efficiency and Comfort
,”
Energy Res. Soc. Sci.
,
32
, pp.
44
54
.
22.
Omagari
,
Y.
,
Mizutaka
,
J.
,
Dazai
,
R.
, and
Ito
,
S.
,
2018
, “
A New Environmental Control System Responsive to the Preferences of All Building Occupants
,”
Azbil Tech. Rev.
, pp.
25
30
.
23.
Kar
,
P.
,
Shareef
,
A.
,
Kumar
,
A.
,
Harn
,
K. T.
,
Kalluri
,
B.
, and
Panda
,
S. K.
,
2019
, “
ReViCEE: A Recommendation Based Approach for Personalized Control, Visual Comfort & Energy Efficiency in Buildings
,”
Build. Environ.
,
152
, pp.
135
144
.
24.
Yang
,
B.
,
Li
,
X.
,
Hou
,
Y.
,
Meier
,
A.
,
Cheng
,
X.
,
Choi
,
J. H.
,
Wang
,
F.
, et al.,
2020
, “
Non-Invasive (Non-Contact) Measurements of Human Thermal Physiology Signals and Thermal Comfort/Discomfort Poses –A Review
,”
Energy Build.
,
224
, p.
110261
.
25.
Parkinson
,
T.
,
Parkinson
,
A.
, and
de Dear
,
R.
,
2019
, “
Continuous IEQ Monitoring System: Context and Development
,”
Build. Environ.
,
149
, pp.
15
25
.
26.
Abdelrahman
,
M. M.
,
Chong
,
A.
, and
Miller
,
C.
,
2022
, “
Personal Thermal Comfort Models Using Digital Twins: Preference Prediction With BIM-extracted Spatial–Temporal Proximity Data From Build2Vec
,”
Build. Environ.
,
207
, p.
108532
.
27.
Comesaña
,
M. M.
,
Martínez
,
A. O.
,
Pastoriza
,
F. T.
,
Gómez
,
J. L.
,
Garrido
,
L. F.
, and
Álvarez
,
E. G.
,
2021
, “
Use of Optimised MLP Neural Networks for Spatiotemporal Estimation of Indoor Environmental Conditions of Existing Buildings
,”
Build. Environ.
,
205
, p.
108243
.
28.
Martinez
,
D.
,
Teixidó
,
M.
,
Font
,
D.
,
Moreno
,
J.
,
Tresanchez
,
M.
,
Marco
,
S.
, and
Palacín
,
J.
,
2014
, “
Ambient Intelligence Application Based on Environmental Measurements Performed with An Assistant Mobile Robot
,”
Sensors
,
14
(
4
), pp.
6045
6055
.
29.
Mantha
,
B. R. K.
,
Feng
,
C.
,
Menassa
,
C. C.
, and
Kamat
,
V. R.
,
2015
, “
Real-Time Building Energy and Comfort Parameter Data Collection Using Mobile Indoor Robots
,”
Proceedings of the 32nd International Symposium on Automation and Robotics in Construction and Mining (ISARC 2015)
,
Oulu, Finland
,
June 15–18
, pp.
1
9
.
30.
Mantha
,
B. R. K.
,
Menassa
,
C. C.
, and
Kamat
,
V. R.
,
2018
, “
Robotic Data Collection and Simulation for Evaluation of Building Retrofit Performance
,”
Autom. Constr.
,
92
, pp.
88
102
.
31.
Quintana
,
B.
,
Vikhorev
,
K.
, and
Adán
,
A.
,
2021
, “
Workplace Occupant Comfort Monitoring With a Multi-sensory and Portable Autonomous Robot
,”
Build. Environ.
,
205
, p.
108194
.
32.
Xiong
,
L.
, and
Yao
,
Y.
,
2021
, “
Study on an Adaptive Thermal Comfort Model With K-Nearest-Neighbors (KNN) Algorithm
,”
Build. Environ.
,
202
, p.
108026
.
33.
Jin
,
M.
,
Liu
,
S.
,
Schiavon
,
S.
, and
Spanos
,
C.
,
2018
, “
Automated Mobile Sensing: Towards High-Granularity Agile Indoor Environmental Quality Monitoring
,”
Build. Environ.
,
127
, pp.
268
276
.
34.
Yang
,
Y.
,
Liu
,
J.
,
Wang
,
W.
,
Cao
,
Y.
, and
Li
,
H.
,
2021
, “
Incorporating SLAM and Mobile Sensing for Indoor CO2 Monitoring and Source Position Estimation
,”
J. Clean. Prod.
,
291
, p.
125780
.
35.
Geng
,
Y.
,
Yuan
,
M.
,
Tang
,
H.
,
Wang
,
Y.
,
Wei
,
Z.
,
Lin
,
B.
, and
Zhuang
,
W.
,
2022
, “
Robot-Based Mobile Sensing System for High-Resolution Indoor Temperature Monitoring
,”
Autom. Constr.
,
142
, p.
104477
.
36.
Chen
,
S.
,
Mihara
,
K.
, and
Wen
,
J.
,
2018
, “
Time Series Prediction of CO2, TVOC and HCHO Based on Machine Learning at Different Sampling Points
,”
Build. Environ.
,
146
, pp.
238
246
.
37.
Mohammadshirazi
,
A.
,
Kalkhorani
,
V. A.
,
Humes
,
J.
,
Speno
,
B.
,
Rike
,
J.
,
Ramnath
,
R.
, and
Clark
,
J. D.
,
2022
, “
Predicting Airborne Pollutant Concentrations and Events in a Commercial Building Using Low-Cost Pollutant Sensors and Machine Learning: A Case Study
,”
Build. Environ.
,
213
, p.
108833
.
38.
Taheri
,
S.
, and
Razban
,
A.
,
2021
, “
Learning-Based CO2 Concentration Prediction: Application to Indoor Air Quality Control Using Demand-Controlled Ventilation
,”
Build. Environ.
,
205
, p.
108164
.
39.
Yang
,
G.
,
Yuan
,
E.
, and
Wu
,
W.
,
2022
, “
Predicting the Long-Term CO2 Concentration in Classrooms Based on the BO–EMD–LSTM Model
,”
Build. Environ.
,
224
, p.
109568
.
40.
Liang
,
W.
,
Xiong
,
R. Liu
, and
Cochran
,
E.
,
2022
, “
Improving Post-Occupancy Evaluation Engagement Using Social Robots
,”
Proceedings of the 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation
,
Boston, MA
,
Nov. 9–10
, pp.
159
167
.
41.
Bonomolo
,
M.
,
Ribino
,
P.
, and
Vitale
,
G.
,
2020
, “
Explainable Post-Occupancy Evaluation Using a Humanoid Robot
,”
Appl. Sci.
,
10
(
21
), p.
7906
.
42.
Ribino
,
P.
,
Bonomolo
,
M.
,
Lodato
,
C.
, and
Vitale
,
G.
,
2021
, “
A Humanoid Social Robot Based Approach for Indoor Environment Quality Monitoring and Well-Being Improvement
,”
Int. J. Soc. Robot.
,
13
, pp.
277
296
.
43.
Open Robotics, ROS, Available at: https://www.ros.org/, Accessed January 10, 2024.
44.
Fox
,
D.
,
Burgard
,
W.
,
Dellaert
,
F.
, and
Thrun
,
S.
,
1999
, “
Monte Carlo Localization: Efficient Position Estimation for Mobile Robots
,”
Proceedings of the Sixteenth National Conference on Artificial Intelligence and the Eleventh Innovative Applications of Artificial Intelligence Conference Innovative Applications of Artificial Intelligence
,
Orlando, FL
,
July 18–22
, pp.
343
349
.
45.
Skiena
,
S.
,
1990
,
“Dijkstra’s Algorithm” in Implementing Discrete Mathematics: Combinatorics and Graph Theory With Mathematica
,
Addison-Wesley
,
Boston, MA
, pp.
225
227
.
46.
Quinlan
,
S.
, and
Khatib
,
O.
,
1993
, “
Elastic Bands: Connecting Path Planning and Control
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
May 2–6
, pp.
802
807
.
47.
Redmon
,
J.
and
Farhadi
,
A.
,
2018
,
Yolov3: An Incremental Improvement, arXiv preprint arXiv
, p.
1804.02767
.
48.
Redmon
,
J.
, 2013-2016, Open Source Neural Networks in C, Available at: https://pjreddie.com/darknet/. Accessed January 10, 2024.
49.
Open Robotics, Wiki ros: rviz, Available at: http://wiki.ros.org/rviz. Accessed January 10, 2024.
You do not currently have access to this content.