Abstract

The solar vortex engine (SVE) is an updraft solar power generation system that removes the limits and high capital costs imposed by the traditional solar chimney. In this study, a thermodynamic power cycle is developed by integrating the processes taking place along the SVE components and identifying the most significant parameters that affect the performance of the system. Computational fluid dynamics (CFD) simulations were performed to develop and validate the power cycle. The thermodynamic processes that comprise the ideal SVE power cycle closely resemble the ideal gas turbine Brayton cycle. When the solar collector losses and turbine irreversibilities are considered, the values of the power output obtained from the power cycle become very close to the actual values acquired from the CFD simulations with an error of 4%. The cycle analysis showed that the power output of the plant can be evaluated using the same formula used for the horizontal-axis wind turbines multiplied by a new parameter represented by the solar collector temperature ratio. The air velocity at the vortex generator outlet mostly influences the power output of the plant. The results also showed that the energy conversion efficiency of the SVE is low, similar to the solar chimney power plant.

References

1.
Michaud
,
L. M.
,
1975
, “
Proposal for the Use of a Controlled Tornado-Like Vortex to Capture the Mechanical Energy Produced in the Atmosphere From Solar Energy
,”
Bull. Am. Meteorol. Soc.
,
56
(
5
), pp.
530
534
.
2.
Michaud
,
L. M.
,
2009
, “
The Atmospheric Vortex Engine
,”
Proceedings of 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH)
,
Toronto, ON, Canada
,
Sept. 26–27
, IEEE, pp.
971
975
.
3.
Ninic
,
N.
, and
Nizetic
,
S.
,
2009
, “Solar Power Plant With Short Diffuser,” World Intellectual Property Organization, WO2009/060245. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2009060245&_cid=P10-M80CWM-44051-1
4.
Nižetić
,
S.
,
Penga
,
Ž
, and
Arıcı
,
M.
,
2017
, “
Contribution to the Research of an Alternative Energy Concept for Carbon Free Electricity Production: Concept of Solar Power Plant With Short Diffuser
,”
Energy Convers. Manage.
,
148
, pp.
533
553
.
5.
Penga
,
Ž
,
Nižetić
,
S.
, and
Arıcı
,
M.
,
2019
, “
Solar Plant With Short Diffuser Concept: Further Improvement of Numerical Model by Included Influence of Guide Vane Topology on Shape and Stability of Gravitational Vortex
,”
J. Cleaner Prod.
,
212
, pp.
353
361
.
6.
Mohiuddin
,
A.
, and
Uzgoren
,
E.
,
2016
, “
Computational Analysis of a Solar Energy Induced Vortex Generator
,”
Appl. Therm. Eng.
,
98
, pp.
1036
1043
.
7.
Zuo
,
L.
,
Qu
,
N.
,
Ding
,
L.
,
Dai
,
P.
,
Liu
,
Z.
,
Xu
,
B.
, and
Yuan
,
Y.
,
2020
, “
A Vortex-Type Solar Updraft Power-Desalination Integrated System
,”
Energy Convers. Manage.
,
222
, p.
113216
.
8.
Zhang
,
M.
,
Luo
,
X.
,
Li
,
T.
,
Zhang
,
L.
,
Meng
,
X.
,
Kase
,
K.
,
Wada
,
S.
,
Yu
,
C. W.
, and
Gu
,
Z.
,
2015
, “
From Dust Devil to Sustainable Swirling Wind Energy
,”
Sci. Rep.
,
5
(
1
), p.
8322
.
9.
Simpson
,
M. W.
,
Pearlstein
,
A. J.
, and
Glezer
,
A.
,
2012
, “
Power Generation From Concentrated Solar-Heated Air Using Buoyancy-Induced Vortices
,”
Proceedings of Energy Sustainability
,
American Society of Mechanical Engineers
, pp.
585
593
, Paper No. ES2012-91437.
10.
Al-Kayiem
,
H.
, and
Mustafa
,
A.
,
2015
, “Solar Vortex Engine,” Malaysia Patent PI2015702890. https://patentscope.wipo.int/search/en/detail.jsf?docId=MY203071768
11.
Al-Kayiem
,
H. H.
,
Mustafa
,
A. T.
, and
Gilani
,
S. I.
,
2018
, “
Solar Vortex Engine: Experimental Modelling and Evaluation
,”
Renewable Energy
,
121
, pp.
389
399
.
12.
Al-Kayiem
,
H. H.
,
Ismaeel
,
A. A.
,
Baheta
,
A. T.
, and
Aurybi
,
M. A.
,
2021
, “
Performance Enhancement of Solar Vortex Power Generator by Al2O3-in-Black Paint Coating
,”
J. Cleaner Prod.
,
316
, p.
128303
.
13.
Das
,
P.
, and
Chandramohan
,
V.
,
2020
, “
Estimation of Flow Parameters and Power Potential of Solar Vortex Engine (SVE) by Varying Its Geometrical Configurations: A Numerical Study
,”
Energy Convers. Manage.
,
223
, p.
113272
.
14.
Das
,
P.
, and
Chandramohan
,
V.
,
2020
, “
Performance Evaluation of Solar Vortex Engine and Optimization of Number of Air Entry Slots and Turbine Location
,”
Energy Sources, Part A
,
47
(
1
), pp.
2916
2932
.
15.
Ismaeel
,
A.
,
Al-Kayiem
,
H.
,
Baheta
,
A.
, and
Aurybi
,
M.
,
2017
, “
Numerical Analysis on the Influence of Inflow Guide Vanes in a Solar Vortex Power Generator
,”
WIT Trans. Ecol. Environ.
,
224
, pp.
553
563
.
16.
Tukkee
,
A. M.
,
Ali-Kayiem
,
H. H.
, and
Gilani
,
S. I.
,
2024
, “
Assessment of the Turbine Location for Optimum Performance of the Solar Vortex Engine as a Replacement to the Tall Chimney Solar Updraft Power Plant Design
,”
J. Appl. Comput. Mech.
,
10
(
1
), pp.
38
54
.
17.
Von Backstrom
,
T. W.
, and
Gannon
,
A.
,
2000
, “
The Solar Chimney Air Standard Thermodynamic Cycle
,”
R&D J.
,
16
(
1
), pp.
16
24
.
18.
Gannon
,
A. J.
, and
von Backstrom
,
T. W.
,
2000
, “
Solar Chimney Cycle Analysis With System Loss and Solar Collector Performance
,”
ASME J. Sol. Energy Eng.
,
122
(
3
), pp.
133
137
.
19.
Haaf
,
W.
,
1984
, “
Solar Chimneys: Part II: Preliminary Test Results From the Manzanares Pilot Plant
,”
Int. J. Sol. Energy
,
2
(
2
), pp.
141
161
.
20.
Haaf
,
W.
,
Friedrich
,
K.
,
Mayr
,
G.
, and
Schlaich
,
J.
,
1983
, “
Solar Chimneys Part I: Principle and Construction of the Pilot Plant in Manzanares
,”
Int. J. Sol. Energy
,
2
(
1
), pp.
3
20
.
21.
Michaud
,
L. M.
,
2000
, “
Thermodynamic Cycle of the Atmospheric Upward Heat Convection Process
,”
Meteorol. Atmos. Phys.
,
72
(
1
), pp.
29
46
.
22.
Ismaeel
,
A. A.
,
2018
, “
Development and Evaluation of Artificial Vortex Power Generator Integrated With Double Solar Absorber
,”
Ph.D. thesis
,
Universiti Teknologi PETRONAS
,
Seri Iskandar, Malaysia
.
23.
ANSYS Fluent User’s Guide 2020 R1.
24.
Tukkee
,
A. M.
,
Al-Kayiem
,
H. H.
, and
Gilani
,
S. I.
,
2023
, “
Effect of Density Variation Method and Air Humidity Consideration on the Computational Simulation of Solar Vortex Power Generation Systems
,”
Ther. Sci. Eng. Prog.
,
37
, p.
101574
.
25.
dos Santos Bernardes
,
M. A.
,
Von Backström
,
T. W.
, and
Kröger
,
D. G.
,
2009
, “
Analysis of Some Available Heat Transfer Coefficients Applicable to Solar Chimney Power Plant Collectors
,”
Sol. Energy
,
83
(
2
), pp.
264
275
.
26.
Pretorius
,
J. P.
, and
Kröger
,
D. G.
,
2006
, “
Solar Chimney Power Plant Performance
,”
ASME J. Sol. Energy Eng.
,
128
(
3
), pp.
302
311
.
27.
Masseran
,
N.
,
Razali
,
A. M.
,
Ibrahim
,
K.
, and
Zin
,
W. W.
,
2012
, “
Evaluating the Wind Speed Persistence for Several Wind Stations in Peninsular Malaysia
,”
Energy
,
37
(
1
), pp.
649
656
.
28.
Aurybi
,
M. A.
,
Al-Kayiem
,
H. H.
,
Gilani
,
S. I. U.
, and
Ismaeel
,
A. A.
,
2017
, “
Numerical Assessment of Solar Updraft Power Plant Integrated With External Heat Sources
,”
WIT Trans. Ecol. Environ.
,
226
, pp.
657
666
.
29.
Swinbank
,
W. C.
,
1963
, “
Long-Wave Radiation From Clear Skies
,”
Q. J. R. Metereol. Soc.
,
89
(
381
), pp.
339
348
.
30.
Schlaich
,
J. R.
,
Bergermann
,
R.
,
Schiel
,
W.
, and
Weinrebe
,
G.
,
2005
, “
Design of Commercial Solar Updraft Tower Systems – Utilization of Solar Induced Convective Flows for Power Generation
,”
ASME J. Sol. Energy Eng.
,
127
(
1
), pp.
117
124
.
31.
Guo
,
P.
,
Li
,
J.
, and
Wang
,
Y.
,
2014
, “
Numerical Simulations of Solar Chimney Power Plant With Radiation Model
,”
Renewable Energy
,
62
, pp.
24
30
.
32.
Guo
,
P.
,
Li
,
J.
,
Wang
,
Y.
, and
Liu
,
Y.
,
2013
, “
Numerical Analysis of the Optimal Turbine Pressure Drop Ratio in a Solar Chimney Power Plant
,”
Sol. Energy
,
98
(
Pt A
), pp.
42
48
.
33.
Xu
,
G.
,
Ming
,
T.
,
Pan
,
Y.
,
Meng
,
F.
, and
Zhou
,
C.
,
2011
, “
Numerical Analysis on the Performance of Solar Chimney Power Plant System
,”
Energy Convers. Manage.
,
52
(
2
), pp.
876
883
.
34.
Schlaich
,
J.
,
1995
,
The Solar Chimney: Electricity From the Sun
,
Edition Axel Menges
,
Stuttgart
.
35.
Koonsrisuk
,
A.
, and
Chitsomboon
,
T.
,
2013
, “
Mathematical Modeling of Solar Chimney Power Plants
,”
Energy
,
51
, pp.
314
322
.
36.
Guo
,
P.
,
Li
,
J.
,
Wang
,
Y.
, and
Wang
,
Y.
,
2016
, “
Evaluation of the Optimal Turbine Pressure Drop Ratio for a Solar Chimney Power Plant
,”
Energy Convers. Manage.
,
108
, pp.
14
22
.
37.
Guo
,
P.
,
Wang
,
Y.
,
Li
,
J.
, and
Wang
,
Y.
,
2016
, “
Thermodynamic Analysis of a Solar Chimney Power Plant System With Soil Heat Storage
,”
Appl. Therm. Eng.
,
100
, pp.
1076
1084
.
38.
Li
,
J.
,
Guo
,
P.
, and
Wang
,
Y.
,
2012
, “
Effects of Collector Radius and Chimney Height on Power Output of a Solar Chimney Power Plant With Turbines
,”
Renew. Energy
,
47
, pp.
21
28
.
39.
Pretorius
,
J. P.
, and
Kröger
,
D. G.
,
2006
, “
Critical Evaluation of Solar Chimney Power Plant Performance
,”
Sol. Energy
,
80
(
5
), pp.
535
544
.
40.
Bejan
,
A.
,
2016
,
Advanced Engineering Thermodynamics
,
John Wiley and Sons
,
Hoboken, NJ
.
41.
Al-Kayiem
,
H. H.
,
Tukkee
,
A. M.
, and
Gilani
,
S. I.
,
2022
, “
Assessment of the Design Influence of the Vortex Generator on the Performance of the Solar Vortex Engine
,”
Energy Convers. Manage.: X
,
16
, p.
100283
.
42.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley and Sons
,
Hoboken, NJ
.
You do not currently have access to this content.