Abstract

An experimental study on the effect of shortening of jet plate perforation length on the thermal and frictional performance of an impinging jet solar air heater with ribs (RIJSAH) was conducted. The jet span length was shortened to 80% and 60% of the total length, while the jet diameter (Djet) considered were 3, 6, and 9 mm. There was an increase in the Nusselt number (Nu) with a decrease in jet span length (JSL) for Djet = 6 mm. It was found that, at Reynolds number (Re) equal to 11,465, the Nu developed by ribbed IJSAH with Djet = 6 mm and JSL = 60% was only 5.06% less than that developed by RIJSAH with Djet = 3 mm while suffering a friction factor 24.13% less than that generated by the latter. The thermohydraulic performance parameter (THPP) attained generally decreased with a decrease in JSL, but at higher Re, the THPP attained by RIJSAH with Djet = 6 mm and 60% JSL was higher than that achieved by RIJSAH with Djet = 6 mm and 80% JSL. There was a clear decrease in temperature difference between the fluid and the absorber plate with a decrease in JSL, which enhanced the thermal performance of the system. In conclusion, it is recommended that RIJSAH be fabricated with Djet = 6 mm and 60% JSL to achieve well-optimized thermal performance.

References

1.
Mund
,
C.
,
Rathore
,
S. K.
, and
Sahoo
,
R. K.
,
2021
, “
A Review of Solar Air Collectors About Various Modifications for Performance Enhancement
,”
Sol. Energy
,
228
, pp.
140
167
.
2.
Sharma
,
S. K.
, and
Kalamkar
,
V. R.
,
2017
, “
Experimental and Numerical Investigation of Forced Convective Heat Transfer in Solar Air Heater With Thin Ribs
,”
Sol. Energy
,
147
, pp.
277
291
.
3.
Singh Yadav
,
A.
, and
Bhagoria
,
J. L.
,
2015
, “
Numerical Investigation of Flow Through an Artificially Roughened Solar Air Heater
,”
Int. J. Ambient Energy
,
36
(
2
), pp.
87
100
.
4.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2024
, “
Thermo-Hydraulic Characteristics Evaluation of a Triangular Solar Air Heater Duct Having Transverse Ribs With Gaps: An Experimental Study
,”
ASME J. Sol. Energy Eng.
,
146
(
4
), p.
041001
.
5.
Singh
,
I.
,
Vardhan
,
S.
,
Singh
,
S.
, and
Singh
,
A.
,
2019
, “
Experimental and CFD Analysis of Solar Air Heater Duct Roughened With Multiple Broken Transverse Ribs: A Comparative Study
,”
Sol. Energy
,
188
, pp.
519
532
.
6.
Singh
,
I.
, and
Singh
,
S.
,
2018
, “
CFD Analysis of Solar Air Heater Duct Having Square Wave Profiled Transverse Ribs as Roughness Elements
,”
Sol. Energy
,
162
, pp.
442
453
.
7.
Kumar
,
D.
,
Layek
,
A.
,
Kumar
,
A.
, and
Kumar
,
R.
,
2024
, “
Experimental Study for the Enhancement of Thermal Efficiency and Development of Nusselt Number Correlation for the Roughened Collector of Solar Air Heater
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
2
), p.
021004
.
8.
Shankar
,
R.
,
Kumar
,
R.
,
Pandey
,
A. K.
, and
Thakur
,
D. S.
,
2024
, “
Experimental Analysis of a Solar Air Heater Featuring Multiple Spiral-Shaped Semi-Conical Ribs
,”
ASME J. Sol. Energy Eng.
,
146
(
3
), p.
031005
.
9.
Kumar
,
D.
, and
Layek
,
A.
,
2023
, “
Heat Transfer Augmentation of a Solar Air Heater Using a Twisted V-Shaped Staggered Rib Over the Absorber Plate
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021013
.
10.
Roy
,
B.
,
Reddy
,
D. S.
, and
Khan
,
M. K.
,
2024
, “
Performance Investigation of a Solar Air Heater Artificially Roughened With Joukowski Airfoil Ribs
,”
ASME J. Sol. Energy Eng.
,
146
(
1
), p.
011004
.
11.
Das
,
S.
,
Biswas
,
A.
, and
Das
,
B.
,
2023
, “
Parametric Investigation on the Thermo-Hydraulic Performance of a Novel Solar Air Heater Design With Conical Protruded Nozzle Jet Impingement
,”
Appl. Therm. Eng.
,
219
(
Part B
), p.
119583
.
12.
Singh
,
S.
,
Suman
,
S.
,
Mitra
,
S.
, and
Kumar
,
M.
,
2024
, “
Thermo-Hydraulic Performance Enhancement of a Solar Air Heater Using Rotating Cylindrical Turbulators
,”
Appl Therm Eng
,
236
(
Part C
), p.
121748
.
13.
Chaurasiya
,
S. K.
, and
Singh
,
S.
,
2023
, “
Heat Transfer and Fluid Dynamics Study in Solar Air Heater Employing Impinging Circular Air Jet Array for Effective Jet Stability
,”
ASME J. Heat Mass Transfer
,
145
(
1
), p.
012901
.
14.
Manjunath
,
M. S.
,
Vasudeva Karanth
,
K.
, and
Yagnesh Sharma
,
N.
,
2019
, “
Numerical Analysis of Flat Plate Solar Air Heater Integrated With an Array of Pin Fins on Absorber Plate for Enhancement in Thermal Performance
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051008
.
15.
Das
,
S.
,
Biswas
,
A.
, and
Das
,
B.
,
2022
, “
Numerical Analysis of a Solar Air Heater With Jet Impingement-Comparison of Performance Between Jet Designs
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011001
.
16.
Elwekeel
,
F. N.
,
Nasr
,
A. A.
,
Radwan
,
M. I.
, and
Aly
,
W. I.
,
2024
, “
Influence of Impingement Jet Designs on Solar Air Collector Performance
,”
Renewable Energy
,
221
, p.
119757
.
17.
Yadav
,
S.
, and
Saini
,
R. P.
,
2020
, “
Numerical Investigation on the Performance of a Solar Air Heater Using Jet Impingement With Absorber Plate
,”
Sol. Energy
,
208
, pp.
236
248
.
18.
Matheswaran
,
M. M.
,
Arjunan
,
T. V.
, and
Somasundaram
,
D.
,
2019
, “
Analytical Investigation of Exergetic Performance on Jet Impingement Solar Air Heater With Multiple Arc Protrusion Obstacles
,”
J. Therm. Anal. Calorim.
,
137
(
1
), pp.
253
266
.
19.
Kumar
,
N.
,
Kumar
,
A.
, and
Maithani
,
R.
,
2020
, “
Development of New Correlations for Heat Transfer and Pressure Loss Due to Internal Conical Ring Obstacles in an Impinging Jet Solar Air Heater Passage
,”
Ther. Sci. Eng. Prog.
,
17
, p.
100493
.
20.
Nadda
,
R.
,
Kumar
,
A.
, and
Maithani
,
R.
,
2017
, “
Developing Heat Transfer and Friction Loss in an Impingement Jets Solar Air Heater With Multiple Arc Protrusion Obstacles
,”
Sol. Energy
,
158
, pp.
117
131
.
21.
Kumar
,
R.
,
Kumar
,
S.
,
Nadda
,
R.
,
Kumar
,
K.
, and
Goel
,
V.
,
2022
, “
Thermo-Hydraulic Efficiency and Correlation Development of an Indoor Designed Jet Impingement Solar Thermal Collector Roughened With Discrete Multi-Arc Ribs
,”
Renewable Energy
,
189
, pp.
1259
1277
.
22.
Goel
,
A. K.
, and
Singh
,
S. N.
,
2020
, “
Influence of Fin Density on the Performance of an Impinging Jet With Fins Type Solar Air Heater
,”
Environ. Dev. Sustain.
,
22
(
6
), pp.
5873
5886
.
23.
Moshery
,
R.
,
Chai
,
T. Y.
,
Sopian
,
K.
,
Fudholi
,
A.
, and
Al-waeli
,
A. H. A.
,
2021
, “
Thermal Performance of Jet-Impingement Solar Air Heater With Transverse Ribs Absorber Plate
,”
Sol. Energy
,
214
, pp.
355
366
.
24.
Chauhan
,
R.
, and
Thakur
,
N. S.
,
2014
, “
Investigation of the Thermohydraulic Performance of Impinging Jet Solar Air Heater
,”
Energy
,
68
, pp.
255
261
.
25.
Sharma
,
A.
,
Thakur
,
S.
,
Dhiman
,
P.
, and
Kumar
,
R.
,
2024
, “
Effect of Jet-Impingement and Surface Roughness on Performance of Solar Air Heater: Experimental Study and Its Optimization
,”
Expert Syst. Appl.
,
238
(
Part E
), p.
122208
.
26.
Harikrishnan
,
M.
,
Kumar
,
R. A.
,
Baby
,
R.
,
Percy
,
D.
, and
Kumar
,
S. A.
,
2024
, “
Exergetic Performance Assessment of a Downward Solar Air Heater with Impinging Air Jets – An Experimental Study
,”
Case Stud. Therm. Eng.
,
55
, p.
104104
.
27.
Soni
,
A.
, and
Singh
,
S. N.
,
2017
, “
Experimental Analysis of Geometrical Parameters on the Performance of an Inline Jet Plate Solar Air Heater
,”
Sol. Energy
,
148
, pp.
149
156
.
28.
Mund
,
C.
,
Rathore
,
S. K.
, and
Sahoo
,
R. K.
,
2023
, “
Experimental Analysis of Thermal Performance of SAH With Impinging Jet Having Varying Length of Perforated Jet Plate
,”
Int. Commun. Heat Mass Transfer
,
145
(
Part A
), p.
106809
.
29.
ASHRAE
,
1977
,
Methods of Testing to Determine the Thermal Performance of Solar Collectors
,
ASHRAE
,
New York
. Standard No. 93-1977. https://www.techstreet.com/standards/ashrae-93-1977?product_id=1875886
30.
Holman
,
J. P.
,
2012
,
Experimental Methods for Engineers
,
McGraw-Hill Publishers
,
New York
.
31.
Kabeel
,
A. E.
,
Hamed
,
M. H.
,
Omara
,
Z. M.
, and
Kandeal
,
A. W.
,
2018
, “
Influence of Fin Height on the Performance of a Glazed and Bladed Entrance Single-Pass Solar Air Heater
,”
Sol. Energy
,
162
, pp.
410
419
.
32.
Kline
,
S.
, and
Mcclintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
33.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
Heat Transfer in Automobile Radiations of the Tubular Type
,
University of California Press
,
Berkeley, CA
.
34.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer
,
McGraw-Hill Education
,
New York
.
35.
Bhatti
,
M. S.
, and
Shah
,
R. K.
,
1987
, “Turbulent and Transition Convective Heat Transfer in Ducts,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
John Wiley & Sons
,
New York
, p.
166
.
You do not currently have access to this content.