Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The economic and environmental dimensions play a pivotal role in evaluating solar still systems. The aim of this study is to evaluate the performance, efficiency, and viability of conical solar still integrated with multiple identical photovoltaic thermal compound parabolic collector (PVT-CPC) through comprehensive analyses of cogeneration efficiency, exergo-economic and enviro-economic factors, and productivity metrics. The results of this study were obtained through matlab programming, enabling accurate and detailed computations. The model has been validated at N = 0 and N = 1, showing strong correlation results: 0.96 and 0.97 for water temperature, 0.99 for yield in both cases, and 0.99 and 0.98 for glass temperature. The system has achieved a total carbon emissions mitigation of 108.29 tCO2 based on energy and 12.44 tCO2 based on exergy while recording an annual yield of 2199.61 kg. The annual cogeneration efficiency, exergo-economic parameter, enviro-economic parameter, and annual productivity are 38.96%, 31.98 kWh/$, $1570.20, and 244.68%, respectively. Furthermore, the obtained results have been compared with prior research and concluded that the exergo-economic and enviro-economic parameters for the proposed system are increased by 93.54% than the solar still with water-cooled condensing surface and 94.71% than solar still containing partially coated condensing cover with thermoelectric cooling.

References

1.
Elsaid
,
K.
,
Sayed
,
E. T.
,
Abdelkareem
,
M. A.
,
Mahmoud
,
M. S.
,
Ramadan
,
M.
, and
Olabi
,
A. G.
,
2020
, “
Environmental Impact of Emerging Desalination Technologies: A Preliminary Evaluation
,”
J. Environ. Chem. Eng.
,
8
(
5
), p.
104099
.
2.
Sohani
,
A.
,
Hoseinzadeh
,
S.
, and
Berenjkar
,
K.
,
2021
, “
Experimental Analysis of Innovative Designs for Solar Still Desalination Technologies; an In-Depth Technical and Economic Assessment
,”
J. Energy Storage
,
33
, p.
101862
.
3.
Tiwari
,
G. N.
,
Mishra
,
A. K.
,
Meraj
,
M.
,
Ahmad
,
A.
, and
Khan
,
M. E.
,
2020
, “
Effect of Shape of Condensing Cover on Energy and Exergy Analysis of a PVT-CPC Active Solar Distillation System
,”
Sol. Energy
,
205
, pp.
113
125
.
4.
Tripathi
,
R.
, and
Tiwari
,
G. N.
,
2005
, “
Effect of Water Depth on Internal Heat and Mass Transfer for Active Solar Distillation
,”
Desalination
,
173
(
2
), pp.
187
200
.
5.
Badran
,
A. A.
,
Al-Hallaq
,
A. A.
,
Eyal Salman
,
I. A.
, and
Odat
,
M. Z.
,
2005
, “
A Solar Still Augmented With a Flat-Plate Collector
,”
Desalination
,
172
(
3
), pp.
227
234
.
6.
Abdel-Rehim
,
Z. S.
, and
Lasheen
,
A.
,
2007
, “
Experimental and Theoretical Study of a Solar Desalination System Located in Cairo, Egypt
,”
Desalination
,
217
(
1–3
), pp.
52
64
.
7.
Taghvaei
,
H.
,
Taghvaei
,
H.
,
Jafarpur
,
K.
,
Karimi Estahbanati
,
M. R.
,
Feilizadeh
,
M.
,
Feilizadeh
,
M.
, and
Seddigh Ardekani
,
A.
,
2014
, “
A Thorough Investigation of the Effects of Water Depth on the Performance of Active Solar Stills
,”
Desalination
,
347
, pp.
77
85
.
8.
Arslan
,
M.
,
2012
, “
Experimental Investigation of Still Performance for Different Active Solar Still Designs Under Closed Cycle Mode
,”
Desalination
,
307
, pp.
9
19
.
9.
Rajaseenivasan
,
T.
,
Nelson Raja
,
P.
, and
Srithar
,
K.
,
2014
, “
An Experimental Investigation on a Solar Still With an Integrated Flat Plate Collector
,”
Desalination
,
347
, pp.
131
137
.
10.
El-Sebaii
,
A. A.
,
Yaghmour
,
S. J.
,
Al-Hazmi
,
F. S.
,
Faidah
,
A. S.
,
Al-Marzouki
,
F. M.
, and
Al-Ghamdi
,
A. A.
,
2009
, “
Active Single Basin Solar Still With a Sensible Storage Medium
,”
Desalination
,
249
(
2
), pp.
699
706
.
11.
Calise
,
F.
,
Dentice d’Accadia
,
M.
, and
Piacentino
,
A.
,
2014
, “
A Novel Solar Trigeneration System Integrating PVT (Photovoltaic/Thermal Collectors) and SW (Seawater) Desalination: Dynamic Simulation and Economic Assessment
,”
Energy
,
67
, pp.
129
148
.
12.
Singh
,
D. B.
,
Yadav
,
J. K.
,
Dwivedi
,
V. K.
,
Kumar
,
S.
,
Tiwari
,
G. N.
, and
Al-Helal
,
I. M.
,
2016
, “
Experimental Studies of Active Solar Still Integrated With Two Hybrid PVT Collectors
,”
Sol. Energy
,
130
, pp.
207
223
.
13.
Singh
,
H. N.
, and
Tiwari
,
G. N.
,
2005
, “
Evaluation of Cloudiness/Haziness Factor for Composite Climate
,”
Energy
,
30
(
9
), pp.
1589
1601
.
14.
Tiwari
,
G. N.
,
Yadav
,
J. K.
,
Singh
,
D. B.
,
Al-Helal
,
I. M.
, and
Abdel-Ghany
,
A. M.
,
2015
, “
Exergoeconomic and Enviroeconomic Analyses of Partially Covered Photovoltaic Flat Plate Collector Active Solar Distillation System
,”
Desalination
,
367
, pp.
186
196
.
15.
Shatar
,
N. M.
,
Sabri
,
M. F. M.
,
Salleh
,
M. F. M.
, and
Ani
,
M. H.
,
2023
, “
Energy, Exergy, Economic, Environmental Analysis for Solar Still Using Partially Coated Condensing Cover With Thermoelectric Cover Cooling
,”
J. Cleaner Prod.
,
387
, p.
135833
.
16.
Abaszadeh Hashemi
,
S.
,
Kazemi
,
M.
, and
Passandideh-Fard
,
M.
,
2022
, “
Experimental Characterization of a Solar Still Integrated With a Spiral Collector Using Energy, Exergy, Economic, and Environmental (4E) Analyses
,”
Sustain. Energy Technol. Assess.
,
53
(
Part B
), p.
102521
.
17.
Singh
,
D. B.
,
Tiwari
,
G. N.
,
Al-Helal
,
I. M.
,
Dwivedi
,
V. K.
, and
Yadav
,
J. K.
,
2016
, “
Effect of Energy Matrices on Life Cycle Cost Analysis of Passive Solar Stills
,”
Sol. Energy
,
134
, pp.
9
22
.
18.
Sahota
,
L.
, and
Tiwari
,
G. N.
,
2017
, “
Exergoeconomic and Enviroeconomic Analyses of Hybrid Double Slope Solar Still Loaded With Nanofluids
,”
Energy Convers. Manage.
,
148
, pp.
413
430
.
19.
Tiwari
,
G. N.
,
Meraj
,
M.
,
Khan
,
M. E.
, and
Dwevedi
,
V. K.
,
2022
, “
Effect of Series and Parallel Combination of Photovoltaic Thermal Collectors on the Performances of Integrated Active Solar Still
,”
J. Thermal Sci. Eng. Appl.
,
14
(
8
), p.
081006
.
20.
Das
,
S.
,
Agarwal
,
P.
,
Sahota
,
L.
,
Meena
,
Y. K.
,
Singh
,
M.
, and
Gill
,
B. S.
,
2024
, “
Economic and Performance Analysis of Modified Solar Distillation System Coupling Different Integrations Using Carbon Quantum Dot Nanoparticles: Generalized Thermal Model
,”
ASME J. Sol. Energy Eng.
,
146
(
4
), p.
041008
.
21.
Abdallah
,
S.
, and
Aldarabseh
,
S. M.
,
2024
, “
Performance of Modified Conical Solar Still Integrated With Continuous Volume Flowrate
,”
ASME J. Sol. Energy Eng.
,
146
(
1
), p.
011001
.
22.
Hammad
,
F. A.
,
Shalaby
,
S. M.
, and
Zayed
,
M. E.
,
2023
, “
Innovative Design of a Dome-Shaped Solar Distiller Enhanced With a Multi-Tray Conical Absorber Basin and Fountain Feeding Supply: Experimental Study With Energy, Exergy, and Enviro-Economic Analyses
,”
Sol. Energy
,
266
, p.
112183
.
23.
Singh
,
G.
,
Singh
,
P. K.
,
Saxena
,
A.
,
Kumar
,
N.
, and
Singh
,
D. B.
,
2024
, “
Investigation of Conical Passive Solar Still by Incorporating Energy Metrics, Efficiency, and Sensitivity Analyses for Sustainable Solar Distillation
,”
J. Cleaner Prod.
,
434
, p.
139949
.
24.
Singh
,
G.
,
Singh
,
P. K.
,
Saxena
,
A.
,
Dobriyal
,
R.
,
Kumar
,
N.
, and
Singh
,
D. B.
,
2023
, “
Exergo-Enviro-Economic and Yearly Productivity Analyses of Conical Passive Solar Still for Sustainable Solar Distillation
,”
Environ. Sci. Pollut. Res.
,
30
, pp.
104350
104373
.
25.
Gaur
,
M. K.
, and
Tiwari
,
G. N.
,
2010
, “
Optimization of Number of Collectors for Integrated PV/T Hybrid Active Solar Still
,”
Appl. Energy
,
87
(
5
), pp.
1763
1772
.
26.
Eltawil
,
M. A.
, and
Omara
,
Z. M.
,
2014
, “
Enhancing the Solar Still Performance Using Solar Photovoltaic, Flat Plate Collector and Hot Air
,”
Desalination
,
349
, pp.
1
9
.
27.
Tripathi
,
R.
,
Tiwari
,
G. N.
, and
Al-Helal
,
I. M.
,
2016
, “
Thermal Modelling of N Partially Covered Photovoltaic Thermal (PVT)—Compound Parabolic Concentrator (CPC) Collectors Connected in Series
,”
Sol. Energy
,
123
, pp.
174
184
.
28.
Kumar
,
N.
,
Purnachandrakumar
,
D.
,
Saxena
,
A.
,
Tiwari
,
S.
,
Singh
,
D. B.
, and
Sinhmar
,
H.
,
2024
, “
Development of Characteristic Equations of Conical Solar Still by Incorporating N Identical Concentrator Collectors With/Without Photovoltaic Panel: A Comparative Investigation
,”
Desalination
,
582
, p.
117621
.
29.
Singh
,
D. B.
, and
Tiwari
,
G. N.
,
2017
, “
Exergoeconomic, Enviroeconomic and Productivity Analyses of Basin Type Solar Stills by Incorporating N Identical PVT Compound Parabolic Concentrator Collectors: A Comparative Study
,”
Energy Convers. Manage.
,
135
, pp.
129
147
.
30.
Huang B
,
J.
,
Lin
,
T. H.
,
Hung
,
W. C.
, and
Sun
,
F. S.
,
2001
, “
Performance Evaluation of Solar Photovoltaic/Thermal Systems
,”
Sol. Energy
,
70
(
5
), pp.
443
448
.
31.
Singh
,
D. B.
, and
Tiwari
,
G. N.
,
2017
, “
Energy, Exergy and Cost Analyses of N Identical Evacuated Tubular Collectors Integrated Basin Type Solar Stills: A Comparative Study
,”
Sol. Energy
,
155
, pp.
829
846
.
32.
Singh
,
D. B.
, and
Tiwari
,
G. N.
,
2016
, “
Effect of Energy Matrices on Life Cycle Cost Analysis of Partially Covered Photovoltaic Compound Parabolic Concentrator Collector Active Solar Distillation System
,”
Desalination
,
397
, pp.
75
91
.
33.
Ozgener
,
O.
, and
Hepbasli
,
A.
,
2005
, “
Exergoeconomic Analysis of a Solar Assisted Ground-Source Heat Pump Greenhouse Heating System
,”
Appl. Therm. Eng.
,
25
(
10
), pp.
1459
1471
.
34.
Dentice D’accadia
,
M.
, and
De Rossi
,
F.
,
1998
, “
Thermoeconomic Optimization of a Refrigeration Plant
,”
Int J. Refrig.
,
21
(
1
), pp.
42
54
.
35.
Kwon
,
Y.-H.
,
Kwak
,
H.-Y.
, and
Oh
,
S.-D.
,
2001
, “
Exergoeconomic Analysis of Gas Turbine Cogeneration Systems
,”
Exergy Int. J.
,
1
(
1
), pp.
31
40
.
36.
Rosen
,
M. A.
, and
Dincer
,
I.
, “
Exergy-Cost-Energy-Mass Analysis of Thermal Systems and Processes
,”
Energy Convers. Manage.
,
44
, pp.
1633
1651
.
37.
Rosen
,
M. A.
, and
Dincer
,
I.
,
2003
, “
Exergoeconomic Analysis of Power Plants Operating on Various Fuels
,”
Appl. Therm. Eng.
,
23
(
6
), pp.
643
658
.
38.
Ozgener
,
L.
, and
Ozgener
,
O.
,
2009
, “
Monitoring of Energy Exergy Efficiencies and Exergoeconomic Parameters of Geothermal District Heating Systems (GDHSs)
,”
Appl. Energy
,
86
(
9
), pp.
1704
1711
.
39.
Agrawal
,
S.
, and
Tiwari
,
G. N.
,
2012
, “
Exergoeconomic Analysis of Glazed Hybrid Photovoltaic Thermal Module Air Collector
,”
Sol. Energy
,
86
(
9
), pp.
2826
2838
.
40.
Tsatsaronis
,
G.
,
Lin
,
L.
, and
Pisa
,
J.
,
1993
, “
Exergy Costing in Exergoeconomics
,”
ASME J. Energy Resour.
,
115
(
1
), pp.
9
16
.
41.
Caliskan
,
H.
,
Dincer
,
I.
, and
Hepbasli
,
A.
,
2012
, “
Exergoeconomic, Enviroeconomic and Sustainability Analyses of a Novel Air Cooler
,”
Energy Build.
,
55
, pp.
747
756
.
42.
Den Elzen
,
M. G. J.
,
Hof
,
A. F.
,
Mendoza Beltran
,
A.
,
Grassi
,
G.
,
Roelfsema
,
M.
,
van Ruijven
,
B.
,
van Vliet
,
J.
, and
van Vuuren
,
D. P.
,
2011
, “
The Copenhagen Accord: Abatement Costs and Carbon Prices Resulting From the Submissions
,”
Environ. Sci. Policy
,
14
(
1
), pp.
28
39
.
43.
Onovwiona
,
H. I.
, and
Ugursal
,
V. I.
,
2006
, “
Residential Cogeneration Systems: Review of the Current Technology
,”
Renewable Sustainable Energy Rev.
,
10
(
5
), pp.
389
431
.
44.
Liu
,
B. Y. H.
, and
Jordan
,
R. C.
,
1960
, “
The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation
,”
Sol. Energy
,
4
(
3
), pp.
1
19
.
45.
Gad
,
H. E.
,
Shams El-Din
,
S.
,
Hussien
,
A. A.
, and
Ramzy
,
K.
,
2015
, “
Thermal Analysis of a Conical Solar Still Performance: An Experimental Study
,”
Sol. Energy
,
122
, pp.
900
909
.
46.
Elbar
,
A. R. A.
,
Yousef
,
M. S.
, and
Hassan
,
H.
,
2019
, “
Energy, Exergy, Exergoeconomic and Enviroeconomic (4E) Evaluation of a New Integration of Solar Still With Photovoltaic Panel
,”
J. Cleaner Prod.
,
233
, pp.
665
680
.
47.
Shoeibi
,
S.
,
Rahbar
,
N.
,
Esfahlani
,
A. A.
, and
Kargarsharifabad
,
H.
,
2021
, “
Energy Matrices, Exergoeconomic and Enviroeconomic Analysis of Air-Cooled and Water-Cooled Solar Still: Experimental Investigation and Numerical Simulation
,”
Renewable Energy
,
171
, pp.
227
244
.
48.
Parsa
,
S. M.
,
Rahbar
,
A.
,
Javadi Y
,
D.
,
Koleini
,
M. H.
,
Afrand
,
M.
, and
Amidpour
,
M.
,
2020
, “
Energy-Matrices, Exergy, Economic, Environmental, Exergoeconomic, Enviroeconomic, and Heat Transfer (6E/HT) Analysis of Two Passive/Active Solar Still Water Desalination Nearly 4000 m: Altitude Concept
,”
J. Cleaner Prod.
,
261
, p.
121243
.
49.
Hassan
,
H.
,
Yousef
,
M. S.
,
Fathy
,
M.
, and
Ahmed
,
M. S.
,
2020
, “
Assessment of Parabolic Trough Solar Collector Assisted Solar Still at Various Saline Water Mediums via Energy, Exergy, Exergoeconomic, and Enviroeconomic Approaches
,”
Renew. Energy
,
155
, pp.
604
616
.
50.
Joshi
,
P.
, and
Tiwari
,
G. N.
,
2018
, “
Energy Matrices, Exergo-Economic and Enviro-Economic Analysis of an Active Single Slope Solar Still Integrated With a Heat Exchanger: A Comparative Study
,”
Desalination
,
443
, pp.
85
98
.
You do not currently have access to this content.