Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The most appropriate low concentrating photovoltaic (LCPV) technology suitable for European buildings located in mid-high latitudes under both maritime and continental climatic conditions has been identified as the asymmetric compound parabolic concentrator (ACPC). To date, there is no published experimental data at different latitudes on the long-term performance of these systems at these latitudes nor how location would modify the optical characteristics of deployed systems. Previous theoretical research by the authors has demonstrated the superiority of the ACPC with this additional work experimentally confirming the robustness of the design. To investigate how seasonal and locational variations affect their measured technical performance two identical ACPC-LCPVs were installed, instrumented, and monitored at two different climatic locations (Uxbridge, UK, and Vevey, Switzerland) from May 2020 to September 2020. A valid comparative performance investigation characterizing two geometrically equivalent ACPC-based LCPV systems using real-life experimental data collected is presented in this paper. Locations at higher latitudes experience greater transverse angles more frequently compared to locations nearer the equator making ACPC geometries more appropriate than symmetrical concentrator configurations for building retrofit. This is shown in this paper over a latitudinal expanse of 31.35 deg for four separate locations; Tessalit (20.19 deg N, 1.00 deg E; Mali), Timimoun (28.03 deg N, 1.65 deg E; Algeria), Uxbridge (51.54 deg N, 0.48 deg E, UK), and Vevey (46.6 deg N, 6.84 deg E, Switzerland).

References

1.
International Energy Agency (IEA) Teams
,
2021
,
World Energy Outlook
,
IEA
,
Paris
. https://www.iea.org/reports/world-energy-outlook-2021.
2.
Li
,
Y.
,
Kubicki
,
S.
,
Guerriero
,
A.
, and
Rezgui
,
Y.
,
2019
, “
Review of Building Energy Performance Certification Schemes Towards Future Improvement
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109244
.
3.
REN 21
,
2021
,
Renewables 2021 Global Status Report
. Paris. https://www.ren21.net/gsr-2021/.
4.
Candelise
,
C.
,
Winskel
,
M.
, and
Gross
,
R. J. K.
,
2013
, “
The Dynamics of Solar PV Costs and Prices as a Challenge for Technology Forecasting
,”
Renewable Sustainable Energy Rev.
,
26
, pp.
96
107
.
5.
Field
,
H.
,
1997
, “
Solar Cell Spectral Response Measurement Errors Related to Spectral Band Width and Chopped Light Waveform
,”
Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference – 1997
,
Anaheim, CA
,
Sept. 29–Oct. 3
, pp.
471
474
.
6.
Radziemska
,
E.
,
2003
, “
The Effect of Temperature on the Power Drop in Crystalline Silicon Solar Cells
,”
Renewable Energy
,
28
(
1
), pp.
1
12
.
7.
Rabl
,
A.
,
1976
, “
Comparison of Solar Concentrators
,”
Sol. Energy
,
18
(
2
), pp.
93
111
.
8.
Winston
,
R.
,
1974
, “
Principles of Solar Concentrators of a Novel Design
,”
Sol. Energy
,
16
(
2
), pp.
89
95
.
9.
Chen
,
X.
, and
Yang
,
X.
,
2021
, “
Solar Collector with Asymmetric Compound Parabolic Concentrator for Winter Energy Harvesting and Summer Overheating Reduction: Concept and Prototype Device
,”
Renewable Energy
,
173
, pp.
92
104
.
10.
Abu-Bakar
,
S. H.
,
Muhammad-Sukki
,
F.
,
Ramirez-Iniguez
,
R.
,
Mallick
,
T. K.
,
Munir
,
A. B.
,
Mohd Yasin
,
S. H.
, et al
,
2014
, “
Rotationally Asymmetrical Compound Parabolic Concentrator for Concentrating Photovoltaic Applications
,”
Appl. Energy
,
136
, pp.
363
372
.
11.
Lu
,
W.
,
Wu
,
Y.
, and
Eames
,
P.
,
2018
, “
Design and Development of a Building Façade Integrated Asymmetric Compound Parabolic Photovoltaic Concentrator (BFI-ACP-PV)
,”
Appl. Energy
,
220
, pp.
325
336
.
12.
Hadavinia
,
H.
, and
Singh
,
H.
,
2019
, “
Modelling and Experimental Analysis of Low Concentrating Solar Panels for Use in Building Integrated and Applied Photovoltaic (BIPV/BAPV) Systems
,”
Renewable Energy
,
139
, pp.
815
829
.
13.
Singh
,
H.
,
Sabry
,
M.
, and
Redpath
,
D. A. G.
,
2016
, “
Experimental Investigations Into Low Concentrating Line Axis Solar Concentrators for CPV Applications
,”
Sol. Energy
,
136
, pp.
421
427
.
14.
Singh
,
H.
,
Redpath
,
D. A. G.
,
Aboutorabi
,
A.
,
Kattakayam
,
T. A.
, and
Griffiths
,
P. W.
,
2010
, “
Optimum Configuration of Compound Parabolic Concentrator (CPC) Solar Water Heater Types for Dwellings Situated in the Northern Maritime Climate
,”
Int. J. Ambient Energy
,
31
(
1
), pp.
47
52
.
15.
Adsten
,
M.
,
2002
, “
Solar Thermal Collectors at High Latitudes Design and Performance of Non- Tracking Concentrators
,”
Ph.D. thesis
,
Acta Universitatis Upsaliensis
,
Uppsala, Uppsala County, Sweden
. http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A161491&dswid=6559.
16.
Parupudi
,
R. V.
,
Singh
,
H.
, and
Kolokotroni
,
M.
,
2020
, “
Low Concentrating Photovoltaics (LCPV) for Buildings and Their Performance Analyses
,”
Appl. Energy
,
279
, p.
115839
.
17.
Li
,
J.
,
Zhang
,
W.
,
He
,
B.
,
Xie
,
L.
,
Hao
,
X.
,
Mallick
,
T.
, et al
,
2021
, “
Experimental Study on the Comprehensive Performance of Building Curtain Wall Integrated Compound Parabolic Concentrating Photovoltaic
,”
Energy
,
227
, p.
120507
.
18.
Xuan
,
Q.
,
Li
,
G.
,
Yang
,
H.
,
Gao
,
C.
,
Jiang
,
B.
,
Liu
,
X.
, et al
,
2021
, “
Performance Evaluation for the Dielectric Asymmetric Compound Parabolic Concentrator with Almost Unity Angular Acceptance Efficiency
,”
Energy
,
233
, p.
121065
.
19.
Roshdan WNA
,
W.
,
Jarimi
,
H.
,
Al-Waeli
,
A. H. A.
,
Ramadan
,
O.
, and
Sopian
,
K.
,
2022
, “
Performance Enhancement of Double Pass Photovoltaic/Thermal Solar Collector Using Asymmetric Compound Parabolic Concentrator (PV/T-ACPC) for Façade Application in Different Climates
,”
Case Stud. Therm. Eng.
,
34
, p.
101998
.
20.
Shanmugam
,
M.
, and
Maganti
,
L. S.
,
2023
, “
Evaluation of Heat Flux Distribution on Flat Plate Compound Parabolic Concentrator with Different Geometric Indices
,”
ASME J. Sol. Energy Eng.
,
145
(
5
), p.
051007
.
21.
Carrillo
,
J. G.
,
Peña-Cruz
,
M. I.
,
Terron-Hernandez
,
M.
, and
Valentín
,
L.
,
2021
, “
Low Cost High-Accuracy Compound Parabolic Concentrator System – A Manufacturing Methodology
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
025001
.
22.
Kessentini
,
H.
, and
Bouden
,
C.
,
2016
, “
Numerical Simulation, Design, and Construction of a Double Glazed Compound Parabolic Concentrators-Type Integrated Collector Storage Water Heater
,”
ASME J. Sol. Energy Eng.
,
138
(
1
), p.
014501
.
23.
Parupudi
,
R. V.
,
Singh
,
H.
,
Kolokotroni
,
M.
, and
Tavares
,
J.
,
2021
, “
Long Term Performance Analysis of Low Concentrating Photovoltaic (LCPV) Systems for Building Retrofit
,”
Appl. Energy
,
300
, p.
117412
.
24.
Solcast
,
n.d.
, Solar Forecasting & Solar Irradiance Data 2022. https://solcast.com/solar-radiation-map
25.
Hertel
,
J. D.
,
Martinez-Moll
,
V.
, and
Pujol-Nadal
,
R.
,
2015
, “
Estimation of the Influence of Different Incidence Angle Modifier Models on the Biaxial Factorization Approach
,”
Energy Convers. Manage.
,
106
, pp.
249
259
.
26.
Rönnelid
,
M.
,
Perers
,
B.
, and
Karlsson
,
B.
,
1997
, “
On the Factorisation of Incidence Angle Modifiers for CPC Collectors
,”
Sol. Energy
,
59
(
4–6
), pp.
281
286
.
27.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
Wiley
,
Hoboken, NJ
.
28.
da Rosa
,
A.
, and
Ordonez
,
J.
,
2022
,
Fundamentals of Renewable Energy Processes
, 4th ed.,
Elsevier
,
London, UK
.
29.
EnergyPlus
,
n.d.
,
Weather Data
.
EnergyplusNet/Weather.
https://energyplus.net/.
30.
Jäger-Waldau
,
A.
,
2017
,
PV Status Report.
Luxembourg, Luxembourg City
, https://publications.jrc.ec.europa.eu/repository/handle/JRC118058.
You do not currently have access to this content.