Abstract

The current research aims to investigate the deposition and dispersion of nanoparticles for thermally developing laminar flow inside a cooling channel of a photovoltaic (PV) panel. The particle transport is modeled in an Eulerian–Lagrangian framework using a two-way coupling approach to perform the particle trajectories. In the absence of turbulent fluctuations, Brownian diffusion is the main force that contributes to particle deposition due to the small size of the particles used in the current study (below 100 nm). Several parameters were investigated such as inlet temperature, Reynolds number, nanoparticle size, and concentration in order to record the subsequent effects on the deposition efficiency, heat transfer coefficient, and pressure drop. There is no direct particle deposition model available in commercial computational packages such as fluent, so a deposition model was developed and programed in c-language using the user-defined function (UDF) capabilities available in the fluent solver to model how the particles are affected by wall impacts. Model validation was performed against the experimental studies found in the literature and showed good agreement. The efficiency of particle deposition on the channel wall was found to increase with decreasing nanoparticle size and/or Reynolds number. Furthermore, the deposition efficiency increased with the increase in fluid inlet temperature and nanofluid concentration. Moreover, the heat transfer rate was decreased as a result of decreasing nanofluid concentration caused by nanoparticle deposition on the channel walls, while the pumping power was also decreased due to concentration loss.

References

1.
Azari
,
A.
,
Kalbasi
,
M.
,
Derakhshandeh
,
M.
, and
Rahimi
,
M.
,
2013
, “
An Experimental Study on Nanofluids Convective Heat Transfer Through a Straight Tube Under Constant Heat Flux
,”
Chin. J. Chem. Eng.
,
21
(
10
), pp.
1082
1088
.
2.
Hussein
,
A. M.
,
Sharma
,
K. V.
,
Bakar
,
R. A.
, and
Kadirgama
,
K.
,
2013
, “
The Effect of Nanofluid Volume Concentration on Heat Transfer and Friction Factor Inside a Horizontal Tube
,”
J. Nanomater.
,
2013
, pp.
1
12
. Article ID 859563.
3.
Nimmagadda
,
R.
, and
Venkatasubbaiah
,
K.
,
2017
, “
Two Phase Analysis on the Conjugate Heat Transfer Performance of Micro-Channel With Cu, Al, SWCNT and Hybrid Nanofluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041011
.
4.
Abhijith
,
M. S.
, and
Venkatasubbaiah
,
K.
,
2022
, “
A Comprehensive Comparison in the Heat Transfer Performance of Pure Water-Based and Liquid Gallium-Based Hybrid Nanofluid Flows Through a Minichannel, Using Two-Phase Eulerian–Eulerian Model
,”
Heat Transfer Eng.
,
44
(
2
), pp.
196
209
.
5.
Abhijith
,
M. S.
, and
Venkatasubbaiah
,
K.
,
2021
, “
Numerical Study of Variation in Drag and Virtual Mass Forces for a Nanofluid Flow Through a Microchannel Using Eulerian-Eulerian Two-Phase Model
,”
Comput. Therm. Sci.
,
13
(
2
), pp.
57
73
.
6.
Salem
,
M.
,
Mohamed
,
A. S. A.
, and
Hussein
,
M.
,
2019
, “
Performance Evaluation of Combined Photovoltaic Thermal Water Cooling System for Hot Climate Regions
,”
ASME J. Sol. Energy Eng.
,
141
(
4
), p.
041010
.
7.
Haque
,
M. A.
,
Miah
,
M. A.
,
Hossain
,
S.
, and
Rahman
,
M. H.
,
2022
, “
Passive Cooling Configurations for Enhancing the Photovoltaic Efficiency in Hot Climatic Conditions
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011009
.
8.
Tiwari
,
A. K.
,
Sontake
,
V. C.
, and
Kalamkar
,
V. R.
,
2020
, “
Enhancing the Performance of Solar Photovoltaic Water Pumping System by Water Cooling Over and Below the Photovoltaic Array
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021005
.
9.
Sainthiya
,
H.
,
Beniwal
,
N. S.
, and
Garg
,
N.
,
2018
, “
Efficiency Improvement of a Photovoltaic Module Using Front Surface Cooling Method in Summer and Winter Conditions
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061009
.
10.
Hinds
,
W. C.
,
2012
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
John Wiley & Sons
,
New York
.
11.
Marchioli
,
C.
,
Giusti
,
A.
,
Salvetti
,
M. V.
, and
Soldati
,
A.
,
2003
, “
Direct Numerical Simulation of Particle Wall Transfer and Deposition in Upward Turbulent Pipe Flow
,”
Int. J. Multiphase Flow
,
29
(
6
), pp.
1017
1038
.
12.
Tian
,
L.
, and
Ahmadi
,
G.
,
2007
, “
Particle Deposition in Turbulent Duct Flows—Comparisons of Different Model Predictions
,”
J. Aerosol Sci.
,
38
(
4
), pp.
377
397
.
13.
Tu
,
J.
,
Inthavong
,
K.
, and
Ahmadi
,
G.
,
2012
,
Computational Fluid and Particle Dynamics in the Human Respiratory System
,
Springer
,
New York, Netherlands
.
14.
Golkarfard
,
V.
, and
Talebizadeh
,
P.
,
2014
, “
Numerical Comparison of Airborne Particles Deposition and Dispersion in Radiator and Floor Heating Systems
,”
Adv. Powder Technol.
,
25
(
1
), pp.
389
397
.
15.
Sardari
,
P. T.
,
Rahimzadeh
,
H.
,
Ahmadi
,
G.
, and
Giddings
,
D.
,
2018
, “
Nano-Particle Deposition in the Presence of Electric Field
,”
J. Aerosol Sci.
,
126
, pp.
169
179
.
16.
Thomas
,
J. W.
,
1967
, “
Assessment of Airborne Radioactivity
,”
International Atomic Energy Agency, Vienna
, pp.
701
712
.
17.
Ingham
,
D. B.
,
1975
, “
Diffusion of Aerosols From a Stream Flowing Through a Cylindrical Tube
,”
J. Aerosol Sci.
,
6
(
2
), pp.
125
132
.
18.
Ingham
,
D. B.
,
1991
, “
Diffusion of Aerosols in the Entrance Region of a Smooth Cylindrical Pipe
,”
J. Aerosol Sci.
,
22
(
3
), pp.
253
257
.
19.
Yeh
,
H. C.
, and
Schum
,
G. M.
,
1980
, “
Models of Human Lung Airways and Their Application to Inhaled Particle Deposition
,”
Bull. Math. Biol.
,
42
(
3
), pp.
461
480
.
20.
Cohen
,
B. S.
, and
Asgharian
,
B.
,
1990
, “
Deposition of Ultrafine Particles in the Upper Airways: An Empirical Analysis
,”
J. Aerosol Sci.
,
21
(
6
), pp.
789
797
.
21.
Talebizadehsardari
,
P.
,
Rahimzadeh
,
H.
,
Ahmadi
,
G.
,
Moghimi
,
M. A.
,
Inthavong
,
K.
, and
Esapour
,
M.
,
2019
, “
Nano-Particle Deposition in Axisymmetric Annular Pipes With Thread
,”
Part. Sci. Technol.
,
38
(
7
), pp.
792
800
.
22.
Li
,
A.
, and
Ahmadi
,
G.
,
2007
, “
Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow
,”
Aerosol Sci. Technol.
,
16
(
4
), pp.
209
226
.
23.
Li
,
A.
, and
Ahmadi
,
G.
,
1993
, “
Computer Simulation of Deposition of Aerosols in a Turbulent Channel Flow With Rough Walls
,”
Aerosol Sci. Technol.
,
18
(
1
), pp.
11
24
.
24.
Ounis
,
H.
,
Ahmadi
,
G.
, and
McLaughlin
,
J. B.
,
1993
, “
Brownian Particles Deposition in a Directly Simulated Turbulent Channel Flow
,”
Phys. Fluids
,
5
(
6
), pp.
1427
1432
.
25.
Zamankhan
,
P.
,
Ahmadi
,
G.
,
Wang
,
Z.
,
Hopke
,
P. K.
,
Cheng
,
Y. S.
,
Su
,
W. C.
, and
Leonard
,
D.
,
2006
, “
Airflow and Deposition of Nano-Particles in a Human Nasal Cavity
,”
Aerosol Sci. Technol.
,
40
(
6
), pp.
463
476
.
26.
Martonen
,
T.
,
Zhang
,
Z.
, and
Yang
,
Y.
,
1996
, “
Particle Diffusion With Entrance Effects in a Smooth-Walled Cylinder
,”
J. Aerosol Sci.
,
27
(
1
), pp.
139
150
.
27.
Inthavong
,
K.
,
Zhang
,
K.
, and
Tu
,
J.
,
2011
, “
Numerical Modelling of Nanoparticle Deposition in the Nasal Cavity and the Tracheobronchial Airway
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
7
), pp.
633
643
.
28.
Inthavong
,
K.
,
Zhang
,
K.
, and
Tu
,
J.
,
2009
, “
Modeling Submicron and Micron Particle Deposition in a Human Nasal Cavity
,”
Seventh International Conference on CFD in the Minerals and Process Industries
,
CSIRO
,
Melbourne, Australia
,
Dec. 9–11
, pp.
1
7
.
29.
Zhao-Qin
,
Y.
, and
Ming
,
L.
,
2012
, “
Experimental Study on Nanoparticle Deposition in Straight Pipe Flow
,”
Therm. Sci.
,
16
(
5
), pp.
1410
1413
.
30.
Kim
,
D. S.
,
Hong
,
S. B.
,
Kim
,
Y. J.
, and
Lee
,
K. W.
,
2006
, “
Deposition and Coagulation of Polydisperse Nanoparticles by Brownian Motion and Turbulence
,”
J. Aerosol Sci.
,
37
(
12
), pp.
1781
1785
.
31.
Yu
,
M. Z.
, and
Lin
,
J. Z.
,
2009
, “
Taylor-Expansion Moment Method for Agglomerate Coagulation Due to Brownian Motion in the Entire Size Regime
,”
J. Aerosol Sci.
,
40
(
6
), pp.
549
562
.
32.
Yu
,
M.
,
Lin
,
J.
, and
Chan
,
T.
,
2008
, “
A New Moment Method for Solving the Coagulation Equation for Particles in Brownian Motion
,”
Aerosol Sci. Technol.
,
42
(
9
), pp.
705
713
.
33.
Ghaffarpasand
,
O.
,
Drewnick
,
F.
,
Hosseiniebalam
,
F.
,
Gallavardin
,
S.
,
Fachinger
,
J.
,
Hassanzadeh
,
S.
, and
Borrmann
,
S.
,
2012
, “
Penetration Efficiency of Nanometer-Sized Aerosol Particles in Tubes Under Turbulent Flow Conditions
,”
J. Aerosol Sci.
,
50
, pp.
11
25
.
34.
Kusdianto
,
K.
,
Gen
,
M.
, and
Lenggoro
,
I. W.
,
2014
, “
Area-Selective Deposition of Charged Particles Derived From Colloidal Aerosol Droplets on a Surface With Different Hydrophilic Levels
,”
J. Aerosol Sci.
,
78
, pp.
83
96
.
35.
Lin
,
J. Z.
,
Yin
,
Z. Q.
,
Gan
,
F. J.
, and
Yu
,
M. Z.
,
2014
, “
Penetration Efficiency and Distribution of Aerosol Particles in Turbulent Pipe Flow Undergoing Coagulation and Breakage
,”
Int. J. Multiphase Flow
,
66
, pp.
28
36
.
36.
Salem
,
H.
,
Mina
,
E.
,
Abdelmessih
,
R.
, and
Mekhail
,
T.
,
2022
, “
Numerical Investigation for Performance Enhancement of Photovoltaic Cell by Nanofluid Cooling
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
021012
.
37.
Mirzaei
,
M.
,
Saffar-Avval
,
M.
, and
Naderan
,
H.
,
2014
, “
Heat Transfer Investigation of Laminar Developing Flow of Nano Fluids in a Microchannel Based on Eulerian—Lagrangian Approach
,”
Can. J. Chem. Eng.
,
92
(
6
), pp.
1139
1149
.
38.
Kumar
,
N.
, and
Puranik
,
B. P.
,
2017
, “
Numerical Study of Convective Heat Transfer With Nanofluids in Turbulent Flow Using a Lagrangian-Eulerian Approach
,”
Appl. Therm. Eng.
,
111
, pp.
1674
1681
.
39.
Albojamal
,
A.
, and
Vafai
,
K.
,
2017
, “
Analysis of Single Phase, Discrete and Mixture Models, in Predicting Nanofluid Transport
,”
Int. J. Heat Mass Transf.
,
114
, pp.
225
237
.
40.
Talbot
,
L.
,
Cheng
,
R. K.
,
Schefer
,
R. W.
, and
Willis
,
D. R.
,
1980
, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
,
101
(
4
), pp.
737
758
.
41.
Ansys
,
2006
,
Ansys Theory Guide
,
Ansys Inc.
,
Canonsburg, PA
.
42.
El-Batsh
,
A.
,
2001
, “
Modeling Particle Deposition on Compressor and Turbine Blade Surfaces
,”
Ph.D. dissertation
,
Vienna University of Technology
,
Vienna, Austria
.
43.
Albojamal
,
A. M.
,
2020
, “
Analysis of Single Phase, Dispersion, Discrete and Mixture Models, Predicting Nanofluid Transport in Forced and Natural Convection and Particle Deposition Through the Porous Media
,”
Ph.D. dissertation
,
University Of California Riverside
,
CA
.
44.
Iacono
,
G.
,
Reynolds
,
A.
, and
Tucker
,
P.
,
2008
, “
Particle Deposition Onto Rough Surfaces
,”
J. Fluid. Eng.
,
130
(
7
), p.
074501
, 5 Pages.
45.
Greenfield
,
C.
, and
Quarini
,
G.
,
1998
, “
A Lagrangian Simulation of Particle Deposition in a Turbulent Boundary Layer in the Presence of Thermophoresis
,”
Appl. Math. Model.
,
22
(
10
), pp.
759
771
.
46.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
314
326
.
47.
Soltani
,
M.
, and
Ahmadi
,
G.
,
1994
, “
On Particle Adhesion and Removal Mechanisms in Turbulent Flows
,”
J. Adhesion Sci. Technol.
,
8
(
7
), pp.
763
785
.
48.
Rimai
,
D. S.
,
Demejo
,
L. P.
, and
Bowen
,
R. C.
,
1994
, “
Mechanics of Particle Adhesion
,”
J. Adhes. Sci. Technol.
,
8
(
11
), pp.
1333
1355
.
49.
Brach
,
M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.
50.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2002
, “
Numerical Investigation of the Effect of Ash Particle Deposition on the Flow Field Through Turbine Cascades
,”
Proceedings of ASME Turbo Expo
,
Amsterdam
,
Netherlands
,
June 3–6
, Vol.
5
, Paper No. GT2002-30600, pp.
1035
1043
.
51.
Lancaster
,
J. F.
,
1999
,
Metallurgy of Welding Handbook
, 6h ed.,
George Allen & Unwin
,
London
.
52.
McHale
,
M.
,
Friedman
,
J.
, and
Karian
,
J.
,
2009
,
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
The American Society of Mechanical Engineers, ASME V&V 20
,
New York
.
53.
Gormley
,
P. G.
, and
Kennedy
,
M.
,
1948
, “
Diffusion From a Stream Flowing Through a Cylindrical Tube
,”
Proc. Roy. Irish Acad. A: Math. Phys. Sci.
,
52
, pp.
163
169
. https://www.jstor.org/stable/20488498.
54.
Longes
,
T. P. W.
, and
Xi
,
J.
,
2007
, “
Computational Investigation of Particle Inertia Effects on Submicron Aerosol Deposition in the Respiratory Tract
,”
J. Aerosol Sci.
,
38
(
1
), pp.
111
130
.
55.
Kim
,
D.
,
Kwon
,
Y.
,
Cho
,
Y.
,
Li
,
C.
,
Cheong
,
S.
,
Hwang
,
Y.
,
Lee
,
J.
,
Hong
,
D.
, and
Moon
,
S.
,
2009
, “
Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions
,”
Curr. Appl. Phys.
,
9
(
2
), pp.
119
123
.
56.
Van Oss
,
C. J.
,
Chaudhury
,
M. K.
, and
Good
,
R. J.
,
1988
, “
Interfacial Lifshitz-van der Waals and Polar Interactions in Macroscopic Systems
,”
Chem. Rev.
,
88
(
6
), pp.
927
941
.
57.
Mina
,
E. M.
,
Ghorbaniasl
,
G.
, and
Lacor
,
C.
,
2018
, “
Study of Nanoparticles Deposition in a Human Upper Airway Model Using a Dynamic Turbulent Schmidt Number
,”
Ain Shams Eng. J
,
9
(
4
), pp.
2389
2398
.
You do not currently have access to this content.