Abstract

In this paper, we introduce a novel direct maximum power point tracking (MPPT) approach that combines the backstepping controller (BSC) and the super-twisting algorithm (STA). The direct backstepping super-twisting algorithm control (BSSTAC) MPPT was developed to extract the maximum power point (MPP) produced by a photovoltaic (PV) generator connected to the battery through a boost DC-DC converter. To reduce the number of sensors required for the BSSTAC implementation, a high gain observer (HGO) was proposed to estimate the value of the state of the PV storage system from measurements of the PV generator voltage and current. The suggested technique is based on the quadratic Lyapunov function and does not employ a standard MPPT algorithm. Results show that the suggested control scheme has good tracking performance with reduced overshoot, chattering, and settling time as compared to the prevalent MPPT tracking algorithms such as perturb and observe (P&O), conventional sliding mode control (CSMC), BSC, and integral backstepping controller (IBSC). Finally, real-time findings using the dSPACE DS 1104 software indicate that the generator PV can accurately forecast the MPP, as well as the efficacy of the suggested MPPT technique. The provided approach’s effectiveness has been validated by a comprehensive comparison with different methods, resulting in the greatest efficiency of 99.88% for BSSTAC.

References

1.
Zaouche
,
F.
,
Rekioua
,
D.
,
Gaubert
,
J.-P.
, and
Mokrani
,
Z.
,
2017
, “
Supervision and Control Strategy for Photovoltaic Generators With Battery Storage
,”
Int. J. Hydrogen Energy
,
42
(
30
), pp.
19536
19555
.
2.
Kaldellis
,
J. K.
,
Zafirakis
,
D.
,
Kavadias
,
K.
, and
Kondili
,
E.
,
2009
, “
An Optimum Sizing Methodology for Combined Photovoltaic-Energy Storage Electricity Generation Configurations
,”
ASME J. Sol. Energy Eng.
,
131
(
2
), p.
021010
.
3.
Femia
,
N.
,
Petrone
,
G.
,
Spagnuolo
,
G.
, and
Vitelli
,
M.
,
2005
, “
Optimization of Perturb and Observe Maximum Power Point Tracking Method
,”
IEEE Trans. Power Electron.
,
20
(
4
), pp.
963
973
.
4.
Hussein
,
K. H.
,
Muta
,
I.
,
Hoshino
,
T.
, and
Osakada
,
M.
,
1995
, “
Maximum Photovoltaic Power Tracking: An Algorithm for Rapidly Changing Atmospheric Conditions
,”
IEE Proc. Gener. Transm. Distrib.
,
142
(
1
), pp.
59
64
.
5.
Ali
,
M. N.
,
2021
, “
A Novel Combination Algorithm of Different Methods of Maximum Power Point Tracking for Grid-Connected Photovoltaic Systems
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041003
.
6.
Moyo
,
R. T.
,
Tabakov
,
P. Y.
, and
Moyo
,
S.
,
2021
, “
Design and Modeling of the ANFIS-Based MPPT Controller for a Solar Photovoltaic System
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041002
.
7.
Manimekalai
,
P.
,
Hari Kumar
,
R.
, and
Raghavan
,
S.
,
2015
, “
Enhancement of Fuzzy Controlled Photovoltaic–Diesel System With Battery Storage Using Interleaved Converter With Hybrid MPPT for Rural Home
,”
ASME J. Sol. Energy Eng.
,
137
(
6
), p.
061005
.
8.
Dileep
,
G.
, and
Singh
,
S. N.
,
2017
, “
An Improved Particle Swarm Optimization Based Maximum Power Point Tracking Algorithm for PV System Operating Under Partial Shading Conditions
,”
Sol. Energy
,
158
, pp.
1006
1015
.
9.
Pathak
,
P. K.
, and
Yadav
,
A. K.
,
2019
, “
Design of Battery Charging Circuit Through Intelligent MPPT Using SPV System
,”
Sol. Energy
,
178
, pp.
79
89
.
10.
Pathak
,
P. K.
,
Yadav
,
A. K.
, and
Alvi
,
P. A.
,
2020
, “
Advanced Solar MPPT Techniques Under Uniform and Non-Uniform Irradiance: A Comprehensive Review
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
040801
.
11.
Azevedo
,
G. M. S.
,
Cavalcanti
,
M. C.
,
Oliveira
,
K. C.
,
Neves
,
F. A. S.
, and
Lins
,
Z. D.
,
2009
, “
Comparative Evaluation of Maximum Power Point Tracking Methods for Photovoltaic Systems
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031006
.
12.
Elgendy
,
M. A.
,
Zahawi
,
B.
, and
Atkinson
,
D. J.
,
2012
, “
Assessment of Perturb and Observe MPPT Algorithm Implementation Techniques for PV Pumping Applications
,”
IEEE Trans. Sustainable Energy
,
3
(
1
), pp.
21
33
.
13.
Dahech
,
K.
,
Allouche
,
M.
,
Damak
,
T.
, and
Tadeo
,
F.
,
2017
, “
Backstepping Sliding Mode Control for Maximum Power Point Tracking of a Photovoltaic System
,”
Electr. Power Syst. Res.
,
143
, pp.
182
188
.
14.
Kakosimos
,
P. E.
, and
Kladas
,
A. G.
,
2011
, “
Implementation of Photovoltaic Array MPPT Through Fixed Step Predictive Control Technique
,”
Renewable Energy
,
36
(
9
), pp.
2508
2514
.
15.
Bjaoui
,
M.
,
Khiari
,
B.
,
Benadli
,
R.
,
Memni
,
M.
, and
Sellami
,
A.
,
2019
, “
Practical Implementation of the Backstepping Sliding Mode Controller MPPT for a PV-Storage Application
,”
Energies
,
12
(
18
), p.
3539
.
16.
Bianconi
,
E.
,
Calvente
,
J.
,
Giral
,
R.
,
Mamarelis
,
E.
,
Petrone
,
G.
,
Ramos-Paja
,
C. A.
, and
Vitelli
,
M.
,
2013
, “
Perturb and Observe MPPT Algorithm With a Current Controller Based on the Sliding Mode
,”
Int. J. Electr. Power Energy Syst.
,
44
(
1
), pp.
346
356
.
17.
Valencia
,
P.
, and
Ramos-Paja
,
C.
,
2015
, “
Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems
,”
Energies
,
8
(
11
), pp.
12363
12387
.
18.
Kihal
,
A.
,
Krim
,
F.
,
Laib
,
A.
,
Talbi
,
B.
, and
Afghoula
,
H.
,
2019
, “
An Improved MPPT Scheme Employing Adaptive Integral Derivative Sliding Mode Control for Photovoltaic Systems Under Fast Irradiation Changes
,”
ISA Trans.
,
87
, pp.
297
306
.
19.
Kumar
,
N.
, and
Sharma
,
A.
,
2022
, “
Design and Analysis of Non-Linear Controller for a Standalone PV System Using Lyapunov Stability Theory
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011003
.
20.
Armghan
,
H.
,
Ahmad
,
I.
,
Armghan
,
A.
,
Khan
,
S.
, and
Arsalan
,
M.
,
2018
, “
Backstepping Based Non-Linear Control for Maximum Power Point Tracking in Photovoltaic System
,”
Sol. Energy
,
159
, pp.
134
141
.
21.
El Idrissi
,
R.
,
Abbou
,
A.
, and
Mokhlis
,
M.
,
2020
, “
Backstepping Integral Sliding Mode Control Method for Maximum Power Point Tracking for Optimization of PV System Operation Based on High-Gain Observer
,”
Int. J. Intell. Eng. Syst.
,
13
(
5
), pp.
133
144
.
22.
Oubbati
,
B. K.
,
Boutoubat
,
M.
,
Rabhi
,
A.
, and
Belkheiri
,
M.
,
2020
, “
Experiential Integral Backstepping Sliding Mode Controller to Achieve the Maximum Power Point of a PV System
,”
Control Eng. Pract.
,
102
, p.
104570
.
23.
Arsalan
,
M.
,
Iftikhar
,
R.
,
Ahmad
,
I.
,
Hasan
,
A.
,
Sabahat
,
K.
, and
Javeria
,
A.
,
2018
, “
MPPT for Photovoltaic System Using Nonlinear Backstepping Controller With Integral Action
,”
Sol. Energy
,
170
, pp.
192
200
.
24.
Chu
,
C.-C.
, and
Chen
,
C.-L.
,
2009
, “
Robust Maximum Power Point Tracking Method for Photovoltaic Cells: A Sliding Mode Control Approach
,”
Sol. Energy
,
83
(
8
), pp.
1370
1378
.
25.
Kchaou
,
A.
,
Naamane
,
A.
,
Koubaa
,
Y.
, and
M’sirdi
,
N.
,
2017
, “
Second Order Sliding Mode-Based MPPT Control for Photovoltaic Applications
,”
Sol. Energy
,
155
, pp.
758
769
.
26.
Benadli
,
R.
,
Khiari
,
B.
,
Memni
,
M.
,
Bjaoui
,
M.
, and
Sellami
,
A.
,
2022
, “
An Improved Super-Twisting Sliding Mode Control for Standalone Hybrid Wind/Photovoltaic/Fuel Cell System Based on Energy Management of Battery/Hydrogen
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
031003
.
27.
Saharaoui
,
H.
,
Chrifi-alaouil
,
L.
,
Drid
,
S.
, and
Bussy
,
P.
,
2016
, “
Second Order Sliding Mode Control of DC-DC Converter Used in the Photovoltaic System According an Adaptive MPPT
,”
Int. J. Renew. Energy Res.
,
6
(
2
), pp.
375
383
.
28.
Yatimi
,
H.
, and
Aroudam
,
E.
,
2016
, “
Assessment and Control of a Photovoltaic Energy Storage System Based on the Robust Sliding Mode MPPT Controller
,”
Sol. Energy
,
139
, pp.
557
568
.
29.
Pathak
,
P. K.
,
Yadav
,
A. K.
, and
Alvi
,
P. A.
,
2022
, “
A State-of-the-Art Review on Shading Mitigation Techniques in Solar Photovoltaics Via Meta-Heuristic Approach
,”
Neural. Comput. Appl.
,
34
(
1
), pp.
171
209
.
You do not currently have access to this content.