Abstract

Despite the significant potential of solar thermochemical process technology for storing solar energy as solid-state solar fuel, several challenges have made its industrial application difficult. It is important to note that solar energy has a transient nature that causes instability and reduces process efficiency. Therefore, it is crucial to implement a robust control system to regulate the process temperature and tackle the shortage of incoming solar energy during cloudy weather. In our previous works, different model-based control strategies were developed namely a proportional integral derivative controller (PID) with gain scheduling and adaptive model predictive control (MPC). These methods were tested numerically to regulate the temperature inside a high-temperature tubular solar reactor. In this work, the proposed control strategies were experimentally tested under various operation conditions. The controllers were challenged to track different setpoints (500 °C, 1000 °C, and 1450 °C) with different amounts of gas/particle flowrates. Additionally, the flow controller was tested to regulate the reactor temperature under a cloudy weather scenario. The ultimate goal was to produce 5 kg of reduced solar fuel magnesium manganese oxide (MgMn2O4) successfully, and the controllers were able to track the required process temperature and reject disturbances despite the system's strong nonlinearity. The experimental results showed a maximum error in the temperature setpoint of less than 0.5% (6 °C), and the MPC controller demonstrated superior performance in reducing the control effort and rejecting disturbances.

References

1.
Sunku Prasad
,
J.
,
Muthukumar
,
P.
,
Desai
,
F.
,
Basu
,
D. N.
, and
Rahman
,
M. M.
,
2019
, “
A Critical Review of High-Temperature Reversible Thermochemical Energy Storage Systems
,”
Appl. Energy
,
254
, p.
113733
.
2.
Prieto
,
C.
,
Cooper
,
P.
,
Fernández
,
A. I.
, and
Cabeza
,
L. F.
,
2016
, “
Review of Technology: Thermochemical Energy Storage for Concentrated Solar Power Plants
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
909
929
.
3.
Randhir
,
K.
,
King
,
K.
,
Rhodes
,
N.
,
Li
,
L.
,
Hahn
,
D.
,
Mei
,
R.
,
AuYeung
,
N.
, and
Klausner
,
J.
,
2019
, “
Magnesium-Manganese Oxides for High Temperature Thermochemical Energy Storage
,”
J. Energy Storage
,
21
, pp.
599
610
.
4.
Abedini Najafabadi
,
H.
, and
Ozalp
,
N.
,
2018
, “
Aperture Size Adjustment Using Model Based Adaptive Control Strategy to Regulate Temperature in a Solar Receiver
,”
Sol. Energy
,
159
, pp.
20
36
.
5.
Abedini Najafabadi
,
H.
, and
Ozalp
,
N.
,
2018
, “
An Advanced Modeling and Experimental Study to Improve Temperature Uniformity of a Solar Receiver
,”
Energy
,
165
, pp.
984
998
.
6.
Wang
,
B.
,
Li
,
L.
,
Pottas
,
J. J.
,
Bader
,
R.
,
Kreider
,
P. B.
,
Wheeler
,
V. M.
, and
Lipiński
,
W.
,
2020
, “
Thermal Model of a Solar Thermochemical Reactor for Metal Oxide Reduction
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051002
.
7.
Wyttenbach
,
J.
,
Bougard
,
J.
,
Descy
,
G.
,
Skrylnyk
,
O.
,
Courbon
,
E.
,
Frère
,
M.
, and
Bruyat
,
F.
,
2018
, “
Performances and Modelling of a Circular Moving Bed Thermochemical Reactor for Seasonal Storage
,”
Appl. Energy
,
230
, pp.
803
815
.
8.
Guo
,
Z.
,
Yang
,
J.
,
Tan
,
Z.
,
Tian
,
X.
, and
Wang
,
Q.
,
2021
, “
Numerical Study on Gravity-Driven Granular Flow Around Tube Out-Wall: Effect of Tube Inclination on the Heat Transfer
,”
Int. J. Heat Mass Transfer
,
174
, p.
121296
.
9.
Huang
,
W.
,
Korba
,
D.
,
Randhir
,
K.
,
Petrasch
,
J.
,
Klausner
,
J.
,
AuYeung
,
N.
, and
Li
,
L.
,
2022
, “
Thermochemical Reduction Modeling in a High-Temperature Moving-Bed Reactor for Energy Storage: 1D Model
,”
Appl. Energy
,
306
, p.
118009
.
10.
Korba
,
D.
,
Huang
,
W.
,
Randhir
,
K.
,
Petrasch
,
J.
,
Klausner
,
J.
,
AuYeung
,
N.
, and
Li
,
L.
,
2022
, “
A Continuum Model for Heat and Mass Transfer in Moving-Bed Reactors for Thermochemical Energy Storage
,”
Appl. Energy
,
313
, p.
118842
.
11.
Mészáros
,
A.
,
Rusnák
,
A.
, and
Fikar
,
M.
,
1999
, “
Adaptive Neural PID Control Case Study: Tubular Chemical Reactor
,”
Comput. Chem. Eng.
,
23
, pp.
S847
S850
.
12.
Petrasch
,
J.
,
Osch
,
P.
, and
Steinfeld
,
A.
,
2009
, “
Dynamics and Control of Solar Thermochemical Reactors
,”
Chem. Eng. J.
,
145
(
3
), pp.
362
370
.
13.
Mokhtar
,
M.
,
Zahler
,
C.
, and
Stieglitz
,
R.
,
2022
, “
Control of Concentrated Solar Direct Steam Generation Collectors for Process Heat Applications
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011005
.
14.
Alsahlani
,
A.
,
Randhir
,
K.
,
Ozalp
,
N.
, and
Klausner
,
J.
,
2022
, “
A Forward Feedback Control Scheme for a Solar Thermochemical Moving Bed Counter-Current Flow Reactor
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
031004
.
15.
Rowe
,
S. C.
,
Hischier
,
I.
,
Palumbo
,
A. W.
,
Chubukov
,
B. A.
,
Wallace
,
M. A.
,
Viger
,
R.
,
Lewandowski
,
A.
,
Clough
,
D. E.
, and
Weimer
,
A. W.
,
2018
, “
Nowcasting, Predictive Control, and Feedback Control for Temperature Regulation in a Novel Hybrid Solar-Electric Reactor for Continuous Solar-Thermal Chemical Processing
,”
Sol. Energy
,
174
, pp.
474
488
.
16.
Alsahlani
,
A.
,
Randhir
,
K.
,
Ozalp
,
N.
, and
Klausner
,
J.
,
2022
, “
A Simplified Numerical Approach to Characterize the Thermal Response of a Moving Bed Solar Reactor
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
8
), p.
081010
.
17.
Alsahlani
,
A.
,
Randhir
,
K.
,
Hayes
,
M.
,
Schimmels
,
P.
,
Ozalp
,
N.
, and
Klausner
,
J.
,
2023
, “
Design of a Combined PID Controller to Regulate the Temperature Inside a High-Temperature Tubular Solar Reactor
,”
ASME J. Sol Energy Eng.
,
145
(
1
), p.
011011
.
18.
Alsahlani
,
A.
,
Randhir
,
K.
,
Hayes
,
M.
,
Schimmels
,
P.
,
Ozalp
,
N.
, and
Klausner
,
J.
,
2023
, “
Implementation of a Model Predictive Control Strategy to Regulate Temperature Inside Plug-Flow Solar Reactor With Counter-Current Flow
,”
ASME J. Thermal Sci. Eng. Appl.
,
15
(
2
), p.
021013
.
19.
Abedini Najafabadi
,
H.
,
Ozalp
,
N.
,
Ophoff
,
C.
, and
Moens
,
D.
,
2019
, “
An Experimental Study on Temperature Control of a Solar Receiver Under Transient Solar Load
,”
Sol. Energy
,
186
, pp.
52
59
.
20.
Abuseada
,
M.
, and
Ozalp
,
N.
,
2020
, “
Experimental and Numerical Study on a Novel Energy Efficient Variable Aperture Mechanism for a Solar Receiver
,”
Sol. Energy
,
197
, pp.
396
410
.
You do not currently have access to this content.