Abstract

Rapid population growth and increasing energy demand in developing countries are the key drivers behind rising concerns such as energy poverty and environmental degradation. Harnessing solar energy can help the developing countries inch closer to sustainable economic growth. This article presents the performance analysis of a solar water heating system based on an evacuated flat-plate collector (EFPC). EFPCs offer higher optical performance and lower thermal losses in comparison with conventional solar collectors. In this study, a multiparametric analysis provides the guidelines for the design and optimization of a novel low vacuum EFPC system under ambient conditions, for domestic hot water (DHW) applications. A small-scale solar thermal collector system based on a low vacuum (17.5–20 kPa) EFPC of a total area of 4.0 m2 is designed and installed. The system is coupled with a storage tank composed of the helical copper coil configuration inside the tank, which is used as a heat exchanger from a primary loop to a secondary loop. A series of real-time experiments are performed under ambient conditions from December to April. The thermal efficiency of the EFPCs reaches a maximum value of 73.2%, with the glycol–water mixture as a heat transfer fluid at an inlet temperature of 31.2 °C, when the ambient temperature is 15.3 °C, average irradiance is 679.2 Wm−2, and vacuum pressure is 20 kPa. For this duration, the exergy efficiency reaches a peak value of 16%. This EFPC system provides 100 liters of hot water at 57–69 °C per day for DHW consumption when the average ambient temperature is 24 °C. The overall results highlight the potential of EFPCs for hot water applications. Furthermore, an efficiently optimized EFPC system can also be used for space heating during the winter season.

References

1.
International Energy Agency
,
2021
,
Key World Energy Statistics 2021
,
OECD
,
Paris
.
2.
Weiss
,
W.
, and
Spörk-Dür
,
M.
,
2022
,
Solar Heat World Wide 2022
,
International Energy Agency
,
Gleisdorf, Austria
.
3.
Kalogirou
,
S.
,
2003
, “
The Potential of Solar Industrial Process Heat Applications
,”
Appl. Energy
,
76
(
4
), pp.
337
361
.
4.
Alghoul
,
M. A.
,
Sulaiman
,
M. Y.
,
Azmi
,
B. Z.
, and
Wahab
,
M. A.
,
2005
, “
Review of Materials for Solar Thermal Collectors
,”
Anti-Corros. Methods Mater.
,
52
(
4
), pp.
199
206
.
5.
Zhang
,
H. L.
,
Baeyens
,
J.
,
Degrève
,
J.
, and
Cacères
,
G.
,
2013
, “
Concentrated Solar Power Plants: Review and Design Methodology
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
466
481
.
6.
Chamsa-ard
,
W.
,
Brundavanam
,
S.
,
Fung
,
C.
,
Fawcett
,
D.
, and
Poinern
,
G.
,
2017
, “
Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review
,”
Nanomaterials
,
7
(
6
), p.
131
.
7.
Chen
,
Z.
,
Furbo
,
S.
,
Perers
,
B.
,
Fan
,
J.
, and
Andersen
,
E.
,
2012
, “
Efficiencies of Flat Plate Solar Collectors at Different Flow Rates
,”
Energy Procedia
,
30
, pp.
65
72
.
8.
Alvarez
,
A.
,
Cabeza
,
O.
,
Muñiz
,
M. C.
, and
Varela
,
L. M.
,
2010
, “
Experimental and Numerical Investigation of a Flat-Plate Solar Collector
,”
Energy
,
35
(
9
), pp.
3707
3716
.
9.
Shire
,
G. S. F.
,
Moss
,
R. W.
,
Henshall
,
P.
,
Arya
,
F.
,
Eames
,
P. C.
, and
Hyde
,
T.
,
2016
, “Development of an Efficient Low- and Medium-Temperature Vacuum Flat-Plate Solar Thermal Collector,”
Renewable Energy in the Service of Mankind
, Vol.
II
,
Springer International Publishing
,
Cham
, pp.
859
866
.
10.
Shamshirgaran
,
S.
,
Khalaji Assadi
,
M.
,
Al-Kayiem
,
H. H.
, and
Viswanatha Sharma
,
K.
,
2018
, “
Energetic and Exergetic Performance of a Solar Flat-Plate Collector Working With Cu Nanofluid
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031002
.
11.
Ayompe
,
L. M.
, and
Duffy
,
A.
,
2013
, “
Thermal Performance Analysis of a Solar Water Heating System With Heat Pipe Evacuated Tube Collector Using Data From a Field Trial
,”
Sol. Energy
,
90
, pp.
17
28
.
12.
Hazami
,
M.
,
Kooli
,
S.
,
Naili
,
N.
, and
Farhat
,
A.
,
2013
, “
Long-Term Performances Prediction of an Evacuated Tube Solar Water Heating System Used for Single-Family Households Under Typical Nord-African Climate (Tunisia)
,”
Sol. Energy
,
94
, pp.
283
298
.
13.
Kumar
,
A.
,
Said
,
Z.
, and
Bellos
,
E.
,
2020
, “
An Up-to-Date Review on Evacuated Tube Solar Collectors
,”
J. Therm. Anal. Calorim.
,
145
(
6
), pp.
2873
2889
.
14.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2013
, “
A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications
,”
Appl. Energy
,
104
, pp.
538
553
.
15.
Evangelisti
,
L.
,
De Lieto Vollaro
,
R.
, and
Asdrubali
,
F.
,
2019
, “
Latest Advances on Solar Thermal Collectors: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
114
, p.
109318
.
16.
Smaili
,
K.
,
Kasbadji Merzouk
,
N.
,
Merzouk
,
M.
, and
Boukenoui
,
R.
,
2023
, “
Estimation of the Daily Utilizability of a Flat Plate Solar Collector for Different Climatic Zones in Algeria
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031006
.
17.
Eaton
,
C. B.
, and
Blum
,
H. A.
,
1975
, “
The Use of Moderate Vacuum Environments as a Means of Increasing the Collection Efficiencies and Operating Temperatures of Flat-Plate Solar Collectors
,”
Sol. Energy
,
17
(
3
), pp.
151
158
.
18.
Moss
,
R. W.
,
Henshall
,
P.
,
Arya
,
F.
,
Shire
,
G. S. F.
,
Hyde
,
T.
, and
Eames
,
P. C.
,
2018
, “
Performance and Operational Effectiveness of Evacuated Flat Plate Solar Collectors Compared With Conventional Thermal, PVT and PV Panels
,”
Appl. Energy
,
216
(
Feb.
), pp.
588
601
.
19.
Benz
,
N.
, and
Beikircher
,
T.
,
1999
, “
99/03262 High Efficiency Evacuated Flat-Plate Solar Collector for Process Steam Production
,”
Fuel Energy Abstr.
,
40
(
5
), p.
342
.
20.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley and Sons
,
New York
.
21.
Hawkins
,
G. A.
,
1954
,
Heat Transmission
,
William H. McAdams. McGraw-Hill
,
New York-London
.
22.
Hollands
,
K. G. T.
,
Unny
,
T. E.
,
Raithby
,
G. D.
, and
Konicek
,
L.
,
1976
, “
Free Convective Heat Transfer Across Inclined Air Layers
,”
ASME J. Heat Mass Transfer
,
98
(
2
), pp.
189
193
.
23.
Akhtar
,
N.
, and
Mullick
,
S. C.
,
2012
, “
Effect of Absorption of Solar Radiation in Glass-Cover(s) on Heat Transfer Coefficients in Upward Heat Flow in Single and Double Glazed Flat-Plate Collectors
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
125
132
.
24.
Zhang
,
H. F.
, and
Lavan
,
Z.
,
1985
, “
Thermal Performance of a Serpentine Absorber Plate
,”
Sol. Energy
,
34
(
2
), pp.
175
177
.
25.
Kramer
,
K.
,
Tschopp
,
D.
,
Nielsen
,
J. E.
,
Kramer
,
K.
, and
Ohnewein
,
P.
,
2019
, “
Review and Outlook on Methods for Product Certification, Energy Yield Measurement, Power Output Determination and Commissioning Test for Large Solar Thermal Installations
,”
Proceedings of the ISES Solar World Congress 2019
,
Santiago, Chile
,
Nov. 3–7
,
International Solar Energy Society
, pp.
1
14
.
26.
Sharafeldin
,
M. A.
, and
Gróf
,
G.
,
2018
, “
Evacuated Tube Solar Collector Performance Using CeO2/Water Nanofluid
,”
J. Cleaner Prod.
,
185
, pp.
347
356
.
27.
Jouybari
,
H. J.
,
Nimvari
,
M. E.
, and
Saedodin
,
S.
,
2019
, “
Thermal Performance Evaluation of a Nanofluid-Based Flat-Plate Solar Collector
,”
J. Therm. Anal. Calorim.
,
137
(
5
), pp.
1757
1774
.
28.
Shojaeizadeh
,
E.
,
Veysi
,
F.
,
Yousefi
,
T.
, and
Davodi
,
F.
,
2014
, “
An Experimental Investigation on the Efficiency of a Flat-Plate Solar Collector With Binary Working Fluid: A Case Study of Propylene Glycol (PG)–Water
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
218
226
.
29.
Kang
,
W.
,
Shin
,
Y.
, and
Cho
,
H.
,
2019
, “
Experimental Investigation on the Heat Transfer Performance of Evacuated Tube Solar Collector Using CuO Nanofluid and Water
,”
J. Mech. Sci. Technol.
,
33
(
3
), pp.
1477
1485
.
30.
Hassan
,
Z.
,
Mahmood
,
M.
,
Waqas
,
A.
,
Ali
,
M.
, and
Ahmed
,
N.
,
2021
, “
Mathematical Modeling and Thermal Analysis of Evacuated Flat Plate Collector in Pakistan
,”
2021 International Conference on Emerging Power Technologies (ICEPT)
,
Topi, Pakistan
,
Apr. 10–11
,
IEEE
, pp.
1
6
.
31.
Shojaeizadeh
,
E.
,
Veysi
,
F.
, and
Kamandi
,
A.
,
2015
, “
Exergy Efficiency Investigation and Optimization of an Al2O3-Water Nanofluid Based Flat-Plate Solar Collector
,”
Energy Build.
,
101
, pp.
12
23
.
You do not currently have access to this content.