Abstract

The direct measurement of particle temperatures in particle-laden flows presents a unique challenge to thermometry due to the flow's transient and stochastic nature. Previous attempts to measure the bulk particle temperature of a dilute particle plume or particle curtain using intrusive and non-intrusive methods have been mildly successful. In this work, a non-intrusive method using a high-speed infrared (IR) camera and a visible-light camera to yield an indirect particle temperature measurement technique is developed and tested. The image sequences obtained from the IR camera allow for the calculation of the apparent particle temperature, while the visible-light image sets allow for the calculation of the plume opacity as a function of flow discharge position. To extract the true particle temperature, a post-processing algorithm based on Planck's radiation theory was developed. The results were validated through a series of lab-scale tests at the University of New Mexico using a test rig capable of generating particle curtains at various temperatures. The temperature profiles extracted from the methodology presented were compared to the temperature data measured during experimental measurements yielding agreement of the bulk particle temperature of the plume within 10% error. The methods described here will be developed further to estimate the heat losses from the falling particle receiver at Sandia National Laboratories.

References

1.
Ho
,
C. K.
,
2016
, “
A Review of High-Temperature Particle Receivers for Concentrating Solar Power
,”
Appl. Therm. Eng.
,
109
(
B
), pp.
958
969
.
2.
Ho
,
C. K.
,
2017
, “
Advances in Central Receivers for Concentrating Solar Applications
,”
Sol. Energy
,
152
, pp.
38
56
.
3.
Gobereit
,
B.
,
Amsbeck
,
L.
,
Buck
,
R.
,
Pitz-Paal
,
R.
,
Röger
,
M.
, and
Müller-Steinhagen
,
H.
,
2015
, “
Assessment of a Falling Solid Particle Receiver With Numerical Simulation
,”
Sol. Energy
,
115
, pp.
505
517
.
4.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Solar Energy Eng.
,
132
(
2
), p.
021008
.
5.
Xiao
,
G.
,
Guo
,
K.
,
Ni
,
M.
,
Luo
,
Z.
, and
Cen
,
K.
,
2014
, “
Optical and Thermal Performance of a High-Temperature Spiral Solar Particle Receiver
,”
Sol. Energy
,
109
, pp.
200
213
.
6.
Calderón
,
A.
,
Palacios
,
A.
,
Barreneche
,
C.
,
Segarra
,
M.
,
Prieto
,
C.
,
Rodriguez-Sanchez
,
A.
, and
Fernández
,
A. I.
,
2018
, “
High Temperature Systems Using Solid Particles as TES and HTF Material: A Review
,”
Appl. Energy
,
213
(
1
), pp.
100
111
.
7.
Ho
,
C. K.
,
Christian
,
J. M.
,
Romano
,
D.
,
Yellowhair
,
J.
, and
Siegel
,
N.
,
2017
, “
Characterization of Particle Flow in a Free-Falling Solar Particle Receiver
,”
ASME J. Solar Energy Eng.
,
139
(
2
), p.
021011
.
8.
Ho
,
C. K.
,
Christian
,
J. M.
,
Yellowhair
,
J. E.
,
Armijo
,
K.
,
Kolb
,
W. J.
,
Jeter
,
S.
,
Golob
,
M.
, and
Nguyen
,
C.
,
2019
, “
On-Sun Performance Evaluation of Alternative High-Temperature Falling Particle Receiver Designs
,”
ASME J. Solar Energy Eng.
,
141
(
1
), p.
011009
.
9.
Ho
,
C. K.
,
Christian
,
J.
,
Yellowhair
,
J.
,
Jeter
,
S.
, and
Golob
,
M.
,
2017
, “
Highlights of the High-Temperature Falling Particle Receiver Project: 2012–2016
,”
22nd Solar PACES Conference, SolarPACES2016, AIP Conference Proceedings
,
Abu Dhabi, UAE
,
Oct. 11–14
.
10.
Ortega
,
J. D.
,
Anaya
,
G.
,
Vorobieff
,
P.
,
Mohan
,
G.
, and
Ho
,
C. K.
,
2020
, “
Imaging Particle Temperatures and Curtain Opacities Using an IR Camera
,”
ASME 2020 14th International Conference on Energy Sustainability, Virtual, Online
,
June 17–18
, p.
V001T02A018
, ES2020-1688, pp. 1–7. 8
11.
Ortega
,
J. D.
,
Ho
,
C. K.
,
Anaya
,
G.
,
Vorobieff
,
P.
, and
Mohan
,
G.
,
2022
, “
Particle Curtain Temperature Estimation Through Imaging Techniques
,”
26th Solar PACES Conference, SolarPACES 2020, AIP Conference Proceedings
,
Virtual
,
Sept. 28–Oct. 2
.
12.
Ho
,
C. K.
,
Ortega
,
J. D.
,
Kinahan
,
S.
,
Martins
,
V.
,
Vorobieff
,
P.
, and
Mammoli
,
A.
,
2019
, “
Characterization of Particle and Heat Losses From Falling Particle Receivers
,”
ASME 2019 13th International Conference on Energy Sustainability
,
Bellevue, WA
,
June 14–17
, p.
V001T03A001
, ES2019-3826, pp. 1–10.
13.
Ho
,
C. K.
, and
Pattyn
,
C. A.
,
2020
, “
Investigating Environmental Impacts of Particle Emissions From a High-Temperature Falling Particle Receiver
,”
25th Solar PACES Conference, SolarPACES 2019, AIP Conference Proceedings
,
Daegu, South Korea
,
Oct. 1-4, 2019
.
14.
Yue
,
L.
,
Shaeffer
,
R.
,
Mills
,
B.
, and
Ho
,
C. K.
,
2020
, “
Active Airflow for Reducing Advective and Particle Loss in Falling Particle Receivers
,”
25th Solar PACES Conference, SolarPACES 2019, AIP Conference Proceedings
,
Daegu, South Korea
,
Oct. 1–4
.
15.
Kim
,
J.-S.
,
Kumar
,
A.
,
Gardner
,
W.
, and
Lipiński
,
W.
,
2019
, “
Numerical and Experimental Investigation of a Novel Multi-Stage Falling Particle Receiver
,”
AIP Conf. Proc.
,
2126
(
1
), p.
030030
.
16.
Mills
,
B.
,
Shaeffer
,
R.
,
Yue
,
L.
, and
Ho
,
C. K.
,
2020
, “
Improving Next-Generation Falling Particle Receiver Designs Subject to Anticipated Operating Conditions
,”
ASME 2020 14th International Conference on Energy Sustainability, ES2020-1667
,
Virtual
,
June 17–18
, p. V001T02A013.
17.
Mills
,
B.
,
Schroeder
,
B.
,
Yue
,
L.
,
Shaeffer
,
R.
, and
Ho
,
C. K.
,
2019
, “
Optimizing a Falling Particle Receiver Geometry Using CFD Simulations to Maximize the Thermal Efficiency
,”
AIP Conf. Proc.
,
2303
(
1
), p.
030027
.
18.
Shaeffer
,
R.
,
Mills
,
B.
,
Yue
,
L.
, and
Ho
,
C. K.
,
2020
, “
Evaluation of Performance Factors for a Multistage Falling Particle Receiver
,”
ASME 2020 14th International Conference on Energy Sustainability, Virtual Online Conference
,
June 17–18
, p.
V001T02A020
, ES2020-9783.
19.
Yue
,
L.
,
Mills
,
B.
,
Christian
,
J.
, and
Ho
,
C. K.
,
2022
, “
Effect of Quartz Aperture Covers on the Fluid Dynamics and Thermal Efficiency of Falling Particle Receivers
,”
ASME J. Solar Energy Eng.
,
144
(
4
), p.
041008
.
20.
Brubach
,
J.
,
Pflisch
,
C.
,
Dreizler
,
A.
, and
Atakan
,
B.
,
2013
, “
On Surface Temperature Measurements With Thermographic Phosphors: A Review
,”
Prog. Energy Combust. Sci.
,
39
(
1
), pp.
37
60
.
21.
Kueh
,
K. C. Y.
,
Lau
,
T. C. W.
,
Nathan
,
G. J.
, and
Alwahabi
,
Z. T.
,
2017
, “
Single-Shot Planar Temperature Imaging of Radiatively Heated Fluidized Particles
,”
Opt. Exp.
,
25
(
23
), pp.
28764
28775
.
22.
Zhao
,
W.
,
Kueh
,
K. C. Y.
,
Nathan
,
G. J.
, and
Alwahabi
,
Z. T.
,
2021
, “
Temperature Imaging of Mobile BaMgAl10O17:Eu Phosphor Aggregates Under High Radiation Flux
,”
Opt. Lasers Eng.
,
137
, pp.
1
8
.
23.
Zhang
,
F.
,
Peng
,
J.
,
Geng
,
J.
,
Wang
,
Z.
, and
Zhang
,
Z.
,
2009
, “
On Surface Temperature Measurements With Thermographic Phosphors: A Review
,”
Exp. Therm. Fluid. Sci.
,
33
(
3
), pp.
424
430
.
24.
Charogiannis
,
A.
,
Zadrazil
,
I.
, and
Markides
,
C. N.
,
2016
, “
Thermographic Particle Velocimetry (TPV) for Simultaneous Interfacial Temperature and Velocity Measurements
,”
Int. J. Heat Mass Transfer
,
97
, pp.
589
595
.
25.
Ortega
,
J. D.
,
Ho
,
C.
,
Anaya
,
G.
,
Vorobieff
,
P.
, and
Mohan
,
G.
,
2021
, “
A Non-Intrusive Particle Temperature Measurement Methodology Using Thermogram and Visible-Light Image Sets
,”
ASME 2021 15th International Conference on Energy Sustainability, Virtual, Online
,
June 16–18, 2020
, p.
V001T02A013
, ES2021-63791; pp. 1–6.
26.
Preciado
,
M.
,
Carles
,
G.
, and
Harvey
,
A.
,
2018
, “
Video-Rate Computational Super-Resolution and Integral Imaging at Longwave-Infrared Wavelengths
,”
OSA Contin.
,
1
(
1
), pp.
170
180
.
27.
Mandanici
,
E.
,
Tavasci
,
L.
,
Corsini
,
F.
, and
Gandolfi
,
S.
,
2019
, “
A Multi-Image Super-Resolution Algorithm Applied to Thermal Imagery
,”
Appl. Geomat.
,
11
(
3
), pp.
215
228
.
28.
Kuni Zoetgnande
,
Y. W.
,
Cormier
,
G.
,
Fougeres
,
A.-J.
, and
Dillenseger
,
J.-L.
,
2020
, “
Sub-Pixel Matching Method for Low-Resolution Thermal Stereo Images
,”
J. Infrared Phys. Technol.
,
105
(
103161
), pp.
1
12
.
29.
Jones
,
H. G.
, and
Sirault
,
X. R. R.
,
2014
, “
Scaling of Thermal Images at Different Spatial Resolution: The Mixed Pixel Problem
,”
Agronomy
,
4
(
3
), pp.
380
396
.
30.
Howell
,
J. R.
,
Mengüç
,
M. P.
, and
Siegel
,
R.
,
2015
,
Thermal Radiation Heat Transfer, Chapter 1: Introduction to Radiative Heat Transfer
, 6th ed.,
CRC Press
,
Boca Raton, FL
.
31.
Kim
,
K.
,
Siegel
,
N.
,
Kolb
,
G.
,
Rangaswamy
,
V.
, and
Moujaes
,
S.
,
2009
, “
A Study of Solid Particle Flow Characterization in Solar Particle Receiver
,”
Sol. Energy
,
83
(
10
), pp.
1784
1793
.
32.
Carlomagno
,
G. M.
, and
Cardone
,
G.
,
2010
, “
Infrared Thermography for Convective Heat Transfer Measurements
,”
Exp. Fluids
,
49
(
6
), pp.
1187
1218
.
33.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2010
,
Heat and Mass Transfer: Fundamentals and Applications, Chapter 4: Transient Heat Transfer
, 4th ed.,
McGraw-Hill Science/Engineering/Math
,
New York, NY
.
34.
Ortega
,
J. D.
,
Vazquez
,
I. R.
,
Vorobieff
,
P.
, and
Ho
,
C.
,
2021
, “
A Simple and Fast MATLAB-Based Particle Size Distribution Analysis Tool
,”
Int. J. Comput. Methods Exp. Meas.
,
9
(
4
), pp.
352
364
.
You do not currently have access to this content.