Abstract

Particle Image Velocimetry (PIV) measurements are commonly used to determine velocity fields from a flow, given that sufficient tracers can be added and tracked to determine their motion. While these types of measurements are typically completed using high-speed cameras to capture the trajectories of the tracer particles, the experiments performed at the University of New Mexico generated extensive time-resolved infrared temperature image (i.e., thermogram) sets of a free-falling particle curtain captured at 300 Hz. The camera used for such measurements was high-speed infrared camera that provides a resolution of 640 × 512. The thermogram sets acquired have been extensively analyzed with two commonly used commercial PIV analysis packages, DaVis and PIVlab. The comparison between the two software packages showed consistent velocity fields and contours, along with corresponding average velocity as functions of discharge position. As expected, the vertical velocity component of these gravity-driven curtains follows a trend that resembles a free-falling sphere rather than a falling sphere experiencing drag. The study also found that the discharge velocity showed negligible effects due to the inlet particle temperature of the curtain. These results will be applied to the development of a methodology to estimate the mass flowrate of particle curtains and plumes using a novel non-intrusive image correlation methodology.

References

1.
Ho
,
C. K.
,
2016
, “
A Review of High-Temperature Particle Receivers for Concentrating Solar Power
,”
Appl. Therm. Eng.
,
109
(
Part B
), pp.
958
969
.
2.
Ho
,
C. K.
,
2017
, “
Advances in Central Receivers for Concentrating Solar Applications
,”
Sol. Energy
,
152
, pp.
38
56
.
3.
Gobereit
,
B.
,
Amsbeck
,
L.
,
Buck
,
R.
,
Pitz-Paal
,
R.
,
Röger
,
M.
, and
Müller-Steinhagen
,
H.
,
2015
, “
Assessment of a Falling Solid Particle Receiver With Numerical Simulation
,”
Sol. Energy
,
115
, pp.
505
517
.
4.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021008
.
5.
Nguyen
,
C.
,
Sadowski
,
D.
,
Alrished
,
A.
,
Al-Ansary
,
H.
,
Jeter
,
S.
, and
Abdel-Khalik
,
S.
,
2014
, “
Study on Solid Particles as a Thermal Medium
,”
Energy Procedia
,
49
, pp.
637
646
.
6.
Calderón
,
A.
,
Palacios
,
A.
,
Barreneche
,
C.
,
Segarra
,
M.
,
Prieto
,
C.
,
Rodriguez-Sanchez
,
A.
, and
Fernández
,
A. I.
,
2018
, “
High Temperature Systems Using Solid Particles as TES and HTF Material: A Review
,”
Appl. Energy
,
213
(
1
), pp.
100
111
.
7.
Ho
,
C. K.
,
Christian
,
J. M.
,
Romano
,
D.
,
Yellowhair
,
J.
, and
Siegel
,
N.
,
2015
, “
“Characterization of Particle Flow in a Free-Falling Solar Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021011
.
8.
Ho
,
C. K.
,
Christian
,
J. M.
,
Yellowhair
,
J. E.
,
Armijo
,
K.
,
Kolb
,
W. J.
,
Jeter
,
S.
,
Golob
,
M.
, and
Nguyen
,
C.
,
2019
, “
On-Sun Performance Evaluation of Alternative High-Temperature Falling Particle Receiver Designs
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011009
.
9.
Xiao
,
G.
,
Guo
,
K.
,
Ni
,
M.
,
Luo
,
Z.
, and
Cen
,
K.
,
2014
, “
Optical and Thermal Performance of a High-Temperature Spiral Solar Particle Receiver
,”
Sol. Energy
,
109
, pp.
200
213
.
10.
Ortega
,
J. D.
,
Anaya
,
G.
,
Vorobieff
,
P.
,
Mohan
,
G.
, and
Ho
,
C. K.
,
2020
, “
Imaging Particle Temperatures and Curtain Opacities Using an IR Camera
,”
Proceedings of ASME 2020 14th International Conference on Energy Sustainability
,
Virtual
,
June 17–18
, pp.
1
7
.
11.
Ma
,
L. Q.
,
Feng
,
L. H.
,
Pan
,
C.
,
Gao
,
Q.
, and
Wang
,
J. J.
,
2015
, “
Fourier Mode Decomposition of PIV Data
,”
Sci. China: Technol. Sci.
,
58
(
11
), pp.
1935
1948
.
12.
Thielicke
,
W.
, and
Stamhuis
,
E. J.
,
2014
, “
PIVlab—Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
,”
J. Open Res. Softw.
,
2
(
1
), p.
e30
.
13.
Oppenheimer
,
J.
,
Rust
,
A. C.
,
Cashman
,
K. V.
, and
Sandnes
,
B.
,
2015
, “
Gas Migration Regimes and Outgassing in Particle-Rich Suspensions
,”
Front. Phys.
,
3
, pp.
1
13
.
14.
Wu
,
K. T.
,
Hishamunda
,
J. B.
,
Chen
,
D. T. N.
,
DeCamp
,
S. J.
,
Chang
,
Y. W.
,
Fernández-Nieves
,
A.
,
Fraden
,
S.
, and
Dogic
,
Z.
,
2017
, “
Transition From Turbulent to Coherent Flows in Confined Three-Dimensional Active Fluids
,”
Science
,
355
(
6331
), p.
eaal1979
.
15.
Roman
,
S.
,
Soulaine
,
C.
,
AlSaud
,
M. A.
,
Kovscek
,
A.
, and
Tchelepi
,
H.
,
2016
, “
Particle Velocimetry Analysis of Immiscible Two-Phase Flow in Micromodels
,”
Adv. Water Resour.
,
95
, pp.
199
211
.
16.
Ortega
,
J. D.
,
Anaya
,
G.
,
Vorobieff
,
P.
,
Ho
,
C.
, and
Mohan
,
G.
, “
Particle Plume Velocities Extracted From High-Speed Thermograms Through Particle Image Velocimetry
,”
Proceedings of ASME 2021 15th International Conference on Energy Sustainability
,
Virtual
,
June 16–18
.
17.
Kim
,
K.
,
Siegel
,
N.
,
Kolb
,
G.
,
Rangaswamy
,
V.
, and
Moujaes
,
S. F.
,
2009
, “
A Study of Solid Particle Flow Characterization in Solar Particle Receiver
,”
Sol. Energy
,
83
(
10
), pp.
1784
1793
.
18.
Ortega
,
J. D.
,
Vazquez
,
I. R.
,
Vorobieff
,
P.
, and
Ho
,
C.
,
2021
, “
A Simple and Fast MATLAB-Based Particle Size Distribution Analysis Tool
,”
Int. J. Comput. Methods Exp. Meas.
,
9
(
4
), pp.
352
364
.
You do not currently have access to this content.