Abstract

The main objective of this study is to enhance the yield of single slope solar still by extending the operating time of solar still by utilizing composite heat storage materials in the solar still. In this regard, the effect of the composite heat energy storage material developed by the mixture of beach sand with paraffin wax is investigated. The experiments are carried out in solar still with composite heat storage material (SSCHSM), and results are compared with solar still with sensible heat storage material (SSSHSM), solar still with latent heat storage material (SSLHSM), and conventional solar still (CSS). The outcome of the two days’ results showed that the total yield of SSCHSM, SSLHSM, SSSHSM, and CSS are 2050, 1880, 1420, and 1250 mL/m2, respectively, on day 1 whereas on day 2 it is 2950, 2680, 2000, and 1820 mL/m2. The thermal analysis results indicated that the average thermal efficacy of SSCHSM, SSLHSM, SSSHSM, and CSS is 21.59%, 19.83%, 14.92%, and 13.16%, respectively, on day 1 and day 2 it is 27.42%, 24.94%, 18.59%, and 16.89%. The economic analysis revealed that the cost per liter and payback month of SSCHSM are $ 0.031 and 6.2 months, whereas the cost per liter for SSLHSM, SSSHSM, and CSS was $ 0.034, $ 0.044, and $ 0.048, respectively. Moreover, the payback period for SSLHSM, SSSHSM, and CSS was 6.8 months, 8.8 months, and 9.7 months, respectively.

References

1.
Natarajan
,
S. K.
,
Suraparaju
,
S. K.
, and
Elavarasan
,
R. M.
,
2022
, “
A Review on Low-Temperature Thermal Desalination Approach
,”
Environ. Sci. Pollut. Res
,
29
(
22
), pp.
32443
32466
.
2.
Suraparaju
,
S. K.
,
Sampathkumar
,
A.
, and
Natarajan
,
S. K.
,
2022
, “A Mini State of Art Survey on Photovoltaic/Thermal Desalination Systems,”
Advances in Mechanical and Materials Technology
,
K.
Govindan
,
H.
Kumar
, and
S.
Yadav
, eds.,
Springer
,
Singapore
, pp.
1
15
.
3.
Chauhan
,
V. K.
,
Shukla
,
S. K.
, and
Rathore
,
P. K. S.
,
2021
, “
A Systematic Review for Performance Augmentation of Solar Still With Heat Storage Materials: A State of Art
,”
J. Energy Storage
,
47
, p.
103578
.
4.
Thakur
,
A. K.
,
Singh
,
R.
,
Gehlot
,
A.
,
Kaviti
,
A. K.
,
Aseer
,
R.
,
Suraparaju
,
S. K.
,
Natarajan
,
S. K.
, and
Sikarwar
,
V. S.
,
2022
, “
Advancements in Solar Technologies for Sustainable Development of Agricultural Sector in India: A Comprehensive Review on Challenges and Opportunities
,”
Environ. Sci. Pollut. Res.
,
29
(
29
), pp.
43607
43634
.
5.
Jani
,
H. K.
, and
Modi
,
K. V.
,
2018
, “
A Review on Numerous Means of Enhancing Heat Transfer Rate in Solar-Thermal Based Desalination Devices
,”
Renewable Sustainable Energy Rev.
,
93
, pp.
302
317
.
6.
Singh
,
S. K.
,
Kaushik
,
S. C.
,
Tyagi
,
V. V.
, and
Tyagi
,
S. K.
,
2021
, “
Comparative Performance and Parametric Study of Solar Still: A Review
,”
Sustain. Energy Technol. Assess.
,
47
, p.
101541
.
7.
Kabeel
,
A. E.
,
Manokar
,
A. M.
,
Sathyamurthy
,
R.
,
Winston
,
D. P.
,
El-Agouz
,
S. A.
, and
Chamkha
,
A. J.
,
2019
, “
A Review on Different Design Modifications Employed in Inclined Solar Still for Enhancing the Productivity
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031007
.
8.
Modi
,
K. V.
,
Shukla
,
D. L.
, and
Ankoliya
,
D. B.
,
2019
, “
A Comparative Performance Study of Double Basin Single Slope Solar Still With and Without Using Nanoparticles
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031008
.
9.
Singh
,
J.
,
Mittal
,
M. K.
, and
Khullar
,
V.
,
2022
, “
Experimental Study of Single-Slope Solar Still Coupled With Nanofluid-Based Volumetric Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011011
.
10.
Ye
,
H.
,
Zheng
,
Y.
,
Zheng
,
H.
, and
Liang
,
S.
,
2020
, “
Sustainable Agriculture Irrigation System Using a Novel Solar Still Design With a Compound Parabolic Concentrator Reflector
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031010
.
11.
Aldarabseh
,
S. M.
, and
Abdallah
,
S.
,
2022
, “
Experimental and Numerical Investigation of a Semispherical Solar Still, Chamber Stepwise Basin, With and Without a Photovoltaic-Powered Electrical Heater
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
031006
.
12.
Suraparaju
,
S. K.
, and
Natarajan
,
S. K.
,
2022
, “
Combined Enhancement of Evaporation and Condensation Rates in the Solar Still for Augmenting the Freshwater Productivity Using Energy Storage and Natural Fibres
,”
J. Water Supply Res. Technol. AQUA
,
71
(
5
), pp.
628
641
.
13.
Sampathkumar
,
A.
, and
Natarajan
,
S. K.
,
2022
, “
Performance Assessment of Single Slope Solar Still by the Incorporation of Palm Flower Powder and Micro Phase Change Material for the Augmentation of Productivity
,”
Environ. Sci. Pollut. Res.
, pp.
1
19
, in press.
14.
Panchal
,
H. N.
,
2016
, “
Use of Thermal Energy Storage Materials for Enhancement in Distillate Output of Solar Still: A Review
,”
Renewable Sustainable Energy Rev.
,
61
, pp.
86
96
.
15.
Suraparaju
,
S. K.
,
Ramasamy
,
D.
, and
Natarajan
,
S. K.
,
2021
, “
Augmentation of Freshwater Productivity in a Single-Slope Solar Still Using Ball Marbles
,”
Environ. Sci. Pollut. Res.
,
28
(
46
), pp.
65974
65986
.
16.
Mevada
,
D.
,
Panchal
,
H.
,
Ahmadein
,
M.
,
Zayed
,
M. E.
,
Alsaleh
,
N. A.
,
Djuansjah
,
J.
,
Moustafa
,
E. B.
,
Elsheikh
,
A. H.
, and
Sadasivuni
,
K. K.
,
2022
, “
Investigation and Performance Analysis of Solar Still With Energy Storage Materials: An Energy–Exergy Efficiency Analysis
,”
Case Stud. Therm. Eng.
,
29
, p.
101687
.
17.
Jathar
,
L. D.
, and
Ganesan
,
S.
,
2020
, “
“Statistical Analysis of Brick, Sand and Concrete Pieces on the Performance of Concave Type Stepped Solar Still
,”
Int. J. Ambient Energy
, pp.
1
38
, in press.
18.
Balachandran
,
G. B.
,
David
,
P. W.
,
Rajendran
,
G.
,
Ali
,
M. N. A.
,
Radhakrishnan
,
V.
,
Balamurugan
,
R.
,
Athikesavan
,
M. M.
, and
Sathyamurthy
,
R.
,
2021
, “
Investigation of Performance Enhancement of Solar Still Incorporated With Gallus Gallus Domesticus Cascara As Sensible Heat Storage Material
,”
Environ. Sci. Pollut. Res.
,
28
(
1
), pp.
611
624
.
19.
Thakur
,
A. K.
, and
Sathyamurthy
,
R.
,
2022
, “
Improving the Potable Water Generation Through Tubular Solar Still Using Eggshell Powder (Bio-Based Energy Source) As a Natural Energy Storage Material—An Experimental Approach
,”
Environ. Sci. Pollut. Res.
,
29
(
27
), pp.
40903
40920
.
20.
Dhivagar
,
R.
,
Mohanraj
,
M.
, and
Belyayev
,
Y.
,
2021
, “
Performance Analysis of Crushed Gravel Sand Heat Storage and Biomass Evaporator-Assisted Single Slope Solar Still
,”
Environ. Sci. Pollut. Res.
,
28
(
46
), pp.
65610
65620
.
21.
Kabeel
,
A. E.
,
Abdelaziz
,
G. B.
, and
El-Said
,
E. M. S.
,
2019
, “
Experimental Investigation of a Solar Still With Composite Material Heat Storage: Energy, Exergy and Economic Analysis
,”
J. Cleaner Prod.
,
231
, pp.
21
34
.
22.
Attia
,
M. E. H.
,
Kabeel
,
A. E.
,
Abdelgaied
,
M.
,
El-Maghlany
,
W. M.
, and
Driss
,
Z.
,
2021
, “
Enhancement of the Performance of Hemispherical Distiller Via Phosphate Pellets As Energy Storage Medium
,”
Environ. Sci. Pollut. Res.
,
28
(
25
), pp.
32386
32395
.
23.
Attia
,
M. E. H.
,
Kabeel
,
A. E.
, and
Abdelgaied
,
M.
,
2021
, “
Optimal Concentration of El Oued Sand Grains As Energy Storage Materials for Enhancement of Hemispherical Distillers Performance
,”
J. Energy Storage
,
36
, p.
102415
.
24.
Kabeel
,
A. E.
,
El-Agouz
,
S. A.
,
Sathyamurthy
,
R.
, and
Arunkumar
,
T.
,
2018
, “
Augmenting the Productivity of Solar Still Using Jute Cloth Knitted With Sand Heat Energy Storage
,”
Desalination
,
443
, pp.
122
129
.
25.
Khallaf
,
A. M.
,
El-Sebaii
,
A. A.
, and
Hegazy
,
M. M.
,
2021
, “
Investigation of Thermal Performance of Single Basin Solar Still With Soft Drink Cans Filled With Sand As a Storage Medium
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061011
.
26.
Kabeel
,
A. E.
,
El-Samadony
Y. A. F.
, and
El-Maghlany
,
W. M.
,
2018
, “
Comparative Study on the Solar Still Performance Utilizing Different PCM
,”
Desalination
,
432
, pp.
89
96
.
27.
Sampathkumar
,
A.
, and
Natarajan
,
S. K.
,
2022
, “
Experimental Analysis on Single Slope Solar Still by the Inclusion of Agar-Agar (Eucheuma) Fibre and Micro Phase Change Material for the Productivity Enhancement
,”
J. Energy Storage
,
50
, p.
104284
.
28.
Suraparaju
,
S. K.
,
Sampathkumar
,
A.
, and
Natarajan
,
S. K.
,
2021
, “
Experimental and Economic Analysis of Energy Storage-Based Single-Slope Solar Still With Hollow-Finned Absorber Basin
,”
Heat Transfer
,
50
(
6
), pp.
5516
5537
.
29.
Kabeel
,
A. E.
,
Sathyamurthy
,
R.
,
Manokar
,
A. M.
,
Sharshir
,
S. W.
,
Essa
,
F. A.
, and
Elshiekh
,
A. H.
,
2020
, “
Experimental Study on Tubular Solar Still Using Graphene Oxide Nano Particles in Phase Change Material (NPCM’s) for Fresh Water Production
,”
J. Energy Storage
,
28
, p.
101204
.
30.
Behura
,
A.
, and
Gupta
,
H. K.
,
2019
, “
Use of Nanoparticle-Embedded Phase Change Material in Solar Still for Productivity Enhancement
,”
Mater. Today: Proc.
,
45
(
4
), pp.
3904
3907
.
31.
Kabeel
,
A. E.
,
Abdelgaied
,
M.
,
Harby
,
K.
, and
Eisa
,
A.
,
2020
, “
Augmentation of Diurnal and Nocturnal Distillate of Modified Tubular Solar Still Having Copper Tubes Filled With PCM in the Basin
,”
J. Energy Storage
,
32
, p.
101992
.
32.
Chamkha
,
A. J.
,
Rufuss
,
D. D. W.
,
Kabeel
,
A. E.
,
Sathyamurthy
,
R.
,
Abdelgaid
,
M.
,
Muthu Manokar
,
A.
, and
Madhu
,
B.
,
2020
, “
Augmenting the Potable Water Produced From Single Slope Solar Still Using CNT-Doped Paraffin Wax As Energy Storage an Experimental Approach
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
12
), pp.
1
10
.
33.
Shoeibi
,
S.
,
Kargarsharifabad
,
H.
, and
Rahbar
,
N.
,
2021
, “
Effects of Nano-Enhanced Phase Change Material and Nano-Coated on the Performance of Solar Stills
,”
J. Energy Storage
,
42
, p.
103061
.
34.
Saleh
,
B.
,
Essa
,
F. A.
,
Aly
,
A.
,
Alsehli
,
M.
,
Panchal
,
H.
,
Afzal
,
A.
, and
Shanmugan
,
S.
,
2022
, “
Investigating the Performance of Dish Solar Distiller With Phase Change Material Mixed With Al2O3 Nanoparticles Under Different Water Depths
,”
Environ. Sci. Pollut. Res.
,
29
(
19
), pp.
28115
28126
.
35.
Dhivagar
,
R.
, and
Kannan
,
K. G.
,
2022
, “
Thermodynamic and Economic Analysis of Heat Pump-Assisted Solar Still Using Paraffin Wax As Phase Change Material
,”
Environ. Sci. Pollut. Res.
,
29
(
2
), pp.
3131
3140
.
36.
Sathish Kumar
,
T. R.
, and
Jegadheeswaran
,
S.
,
2021
, “
Experimental Investigation on Finned Solar Still With Enhanced Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
9
), p.
091001
.
37.
Benhammou
,
M.
, and
Sahli
,
Y.
,
2021
, “
Energetic and Exergetic Analysis of a Sloped Solar Still Integrated With a Separated Heat Storage System Incorporating Phase Change Material
,”
J. Energy Storage
,
40
, p.
102705
.
38.
Dsilva Winfred Rufuss
,
D.
,
Suganthi
,
L.
,
Iniyan
,
S.
, and
Davies
,
P. A.
,
2018
, “
Effects of Nanoparticle-Enhanced Phase Change Material (NPCM) on Solar Still Productivity
,”
J. Cleaner Prod.
,
192
, pp.
9
29
.
39.
Hamdhan
,
I. N.
, and
Clarke
,
B. G.
,
2010
, “
Determination of Thermal Conductivity of Coarse and Fine Sand Soils
,”
Proceedings of the World Geothermal Congress
,
Bali, Indonesia
,
Apr. 25–29
, pp.
1
7
. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/2952.pdf
40.
Suraparaju
,
S. K.
, and
Natarajan
,
S. K.
,
2021
, “
Experimental Investigation of Single-Basin Solar Still Using Solid Staggered Fins Inserted in Paraffin Wax PCM Bed for Enhancing Productivity
,”
Environ. Sci. Pollut. Res.
,
28
(
16
), pp.
20330
20343
.
41.
Suraparaju
,
S. K.
, and
Natarajan
,
S. K.
,
2021
, “
Productivity Enhancement of Single-Slope Solar Still With Novel Bottom Finned Absorber Basin Inserted in Phase Change Material (PCM): Techno-Economic and Enviro-Economic Analysis
,”
Environ. Sci. Pollut. Res.
,
28
(
33
), pp.
45985
46006
.
42.
Suraparaju
,
S. K.
,
Dhanusuraman
,
R.
, and
Natarajan
,
S. K.
,
2021
, “
Performance Evaluation of Single Slope Solar Still With Novel Pond Fibres
,”
Process Saf. Environ. Prot.
,
154
, pp.
142
154
.
43.
Suraparaju
,
S. K.
, and
Natarajan
,
S. K.
,
2022
, “
Sustainability Assessment of Single Slope Solar Still With Glass Cover Cooling Using Naturally Available Fibres
,”
Environ. Prog. Sustainable Energy
,
41
(
5
), p.
e13840
.
44.
Natarajan
,
S. K.
,
Suraparaju
,
S. K.
,
Elavarasan
,
R. M.
,
Pugazhendhi
,
R.
, and
Hossain
,
E.
,
2022
, “
An Experimental Study on Eco-Friendly and Cost-Effective Natural Materials for Productivity Enhancement of Single Slope Solar Still
,”
Environ. Sci. Pollut. Res.
,
29
(
2
), pp.
1917
1936
.
45.
Sampathkumar
,
A.
, and
Natarajan
,
S. K.
,
2021
, “
Experimental Investigation of Single Slope Solar Still With Eucheuma (Agar–Agar) Fibre for Augmentation of Freshwater Yield: Thermo-Economic Analysis
,”
Environ. Prog. Sustainable Energy
,
41
(
2
), p.
e13750
.
46.
Suraparaju
,
S. K.
,
Jha
,
N.
,
Manoj
,
S.
, and
Natarajan
,
S. K.
,
2022
, “Mathematical Modelling and Performance Analysis of Single Slope Solar Desalination System,”
Advances in Mechanical and Materials Technology
,
K.
Govindan
,
H.
Kumar
, and
S.
Yadav
, eds.,
Springer
,
Singapore
, pp.
17
33
.
47.
Suraparaju
,
S. K.
, and
Natarajan
,
S. K.
,
2020
, “
Performance Analysis of Single Slope Solar Desalination Setup With Natural Fiber
,”
Desalin. Water Treat.
,
193
, pp.
64
71
.
48.
Dhivagar
,
R.
,
Mohanraj
,
M.
,
Hidouri
,
K.
, and
Belyayev
,
Y.
,
2021
, “
Energy, Exergy, Economic and Enviro-Economic (4E) Analysis of Gravel Coarse Aggregate Sensible Heat Storage-Assisted Single-Slope Solar Still
,”
J. Therm. Anal. Calorim.
,
145
(
2
), pp.
475
494
.
49.
Suraparaju
,
S. K.
, and
Natarajan
,
S. K.
,
2021
, “
Augmentation of Freshwater Productivity in Single Slope Solar Still Using Luffa Acutangula Fibres
,”
Water Sci. Technol.
,
84
(
10–11
), pp.
2943
2957
.
50.
Sampathkumar
,
A.
, and
Natarajan
,
S. K.
,
2021
, “
Experimental Investigation on Productivity Enhancement in Single Slope Solar Still Using Borassus Flabellifer Micro-Sized Particles
,”
Mater. Lett.
,
299
, p.
130097
.
You do not currently have access to this content.