Abstract

The generated power and thrust of a wind turbine strongly depend on the flow field around the turbine. In the present study, three different inflow methods, i.e., a time series (TS) from large eddy simulation (LES) of atmospheric boundary layer flow field, a synthetic turbulent flow field using the Mann model (MM), and a steady-state mean wind profile with shear, are integrated with the free vortex filament wake method to investigate the effect of wind field generation methods on the wind turbine performance where the impact of the turbine and the trailing wake vortices on the turbulent flow fields is ignored. For this purpose, an in-house vortex lattice free wake (VLFW) code is developed and used to predict the aerodynamic loads on rotor blades. The NREL 5-MW reference wind turbine is used for the VLFW simulations. For a fair assessment of different inflow generation methods on power production of a wind turbine, it is not sufficient that the generated wind fields employed in the TS and MM methods have the same streamwise mean velocity and turbulence intensity at hub height. Instead, the generated inflows must have equivalent power-spectral densities especially at low frequencies since the rotor blades essentially respond to the large-scale fluctuations (macroscopic scales) rather than small-scale fluctuations (microscopic scales). A faster energy decay rate of LES inflow leads to a higher energy content in the TS method at low frequencies (associated with the macroscopic dynamics of the rotor blades). This extra kinetic energy results in a slightly higher mean power production while using the TS method although the inflow conditions at hub height/rotor plane are the same for both the TS and MM methods. Moreover, the impact of simulation time (the length of time integration) on the power production of a wind turbine (exposed to an unsteady inflow) must be taken into account. A short simulation time remarkably affects the mean wind speed over the rotor area for identical turbulent inflows. For Taylor’s hypothesis application using a single LES flow field, the results show a significant difference in the mean powers corresponding to the different realizations due to large turbulent fluctuations.

References

1.
Jonkman
,
J. M.
, and
Buhl Jr.
,
M. L.
,
2005
, “
FAST User’s Guide
,” Technical Report No. NREL/TP-500-38230, National Renewable Energy Laboratory (NREL).
2.
Larsen
,
T. J.
, and
Hansen
,
A. M.
,
2007
, “
How 2 HAWC2, the User’s Manual
,” Risø-r-1597, Risø National Laboratory, Technical University of Denmark.
3.
Bossanyi
,
E.
,
2003
, “
GH Bladed, Theory Manual
,” Technical Report, GH & Partners Ltd, Bristol.
4.
Larsen
,
G. C.
,
Madsen
,
H. A.
,
Thomsen
,
K.
, and
Larsen
,
T. J.
,
2008
, “
Wake Meandering: A Pragmatic Approach
,”
Wind Energy
,
11
(
4
), pp.
377
395
.
5.
Madsen
,
H. A.
,
Larsen
,
G. C.
,
Larsen
,
T. J.
,
Troldborg
,
N.
, and
Mikkelsen
,
R.
,
2010
, “
Calibration and Validation of the Dynamic Wake Meandering Model for Implementation in an Aeroelastic Code
,”
ASME J. Solar Energy Eng.
,
132
(
4
), p.
041014
.
6.
Boorsma
,
K.
,
Schepers
,
J. G. E.
,
Gomez-Iradi
,
S.
,
Herraez
,
I.
,
Lutz
,
T.
,
Weihing
,
P.
,
Oggiano
,
L.
,
Pirrung
,
G.
,
Madsen
,
H. A.
, and
Schaffarczyk
,
P.
,
2018
, “
Final Report of IEA Wind Task 29 Mexnext (Phase 3)
,” Technical Report, ECN-E–18-003, http://resolver.tudelft.nl/uuid:251f749d-41dc-4091-a6fa-08704eae2bab
7.
Madsen
,
H. A.
,
Larsen
,
T. J.
,
Pirrung
,
G. R.
,
Li
,
A.
, and
Zahle
,
F.
,
2020
, “
Implementation of the Blade Element Momentum Model on a Polar Grid and Its Aeroelastic Load Impact
,”
Wind Energy Sci.
,
5
(
1
), pp.
1
27
.
8.
Voutsinas
,
S. G.
,
2006
, “
Vortex Methods in Aeronautics: How to Make Things Work
,”
Int. J. Comput. Fluid Dyn.
,
20
(
1
), pp.
3
18
.
9.
Van Garrel
,
A.
,
2003
, “
Development of a Wind Turbine Aerodynamics Simulation Module
,” Technical Report, ECN-C-03-079, August.
10.
Grasso
,
F.
,
2010
, “
AWSM Ground and Wind Shear Effects in Aerodynamic Calculations
,” Technical Report, ECN-E-10-016, February.
11.
Leishman
,
J. G.
,
Bhagwat
,
M. J.
, and
Bagai
,
A.
,
2002
, “
Free-Vortex Filament Methods for the Analysis of Helicopter Rotor Wakes
,”
J. Aircr.
,
39
(
5
), pp.
759
775
.
12.
Gupta
,
S.
, and
Leishman
,
J.
,
2004
, “
Stability of Methods in the Free-Vortex Wake Analysis of Wind Turbines
,” https://arc.aiaa.org/doi/pdf/10.2514/6.2004-827
13.
Madsen
,
H. A.
,
Riziotis
,
V.
,
Zahle
,
F.
,
Hansen
,
M.
,
Snel
,
H.
,
Grasso
,
F.
,
Larsen
,
T.
,
Politis
,
E.
, and
Rasmussen
,
F.
,
2012
, “
Blade Element Momentum Modeling of Inflow With Shear in Comparison With Advanced Model Results
,”
Wind Energy
,
15
(
1
), pp.
63
81
.
14.
Gupta
,
S.
,
2006
, “
Development of a Time-Accurate Viscous Lagrangian Vortex Wake Model for Wind Turbine Applications
,” PhD thesis,
Department of Aerospace Engineering, University of Maryland
,
College Park, MD
.
15.
Pesmajoglou
,
S. D.
, and
Graham
,
J.
,
2000
, “
Prediction of Aerodynamic Forces on Horizontal Axis Wind Turbines in Free Yaw and Turbulence
,”
J. Wind Eng. Ind. Aerodyn.
,
86
(
1
), pp.
1
14
.
16.
Ramos-Garcıa
,
N.
,
Sørensen
,
J. N.
, and
Shen
,
W. Z.
,
2014
, “
Simulations of the Yawed MEXICO Rotor Using a Viscous-Inviscid Panel Method
,”
J. Phys.: Conf. Ser.
,
524
, p.
012026
.
17.
Garcia
,
N. R.
,
Sørensen
,
J.
, and
Shen
,
W. Z.
,
2013
, “
Development of a Three-Dimensional Viscous-Inviscid Coupling Method for Wind Turbine Computations
,”
International Conference on Aerodynamics of Offshore Wind Energy Systems and Wakes (ICOWES2013)
,
Lyngby, Denmark
,
June 17–19
, pp.
569
581
.
18.
Chattot
,
J.-J.
,
2007
, “
Helicoidal Vortex Model for Wind Turbine Aeroelastic Simulation
,”
Comput. Struct.
,
85
(
11
), pp.
1072
1079
.
19.
Chattot
,
J.-J.
,
2003
, “
Optimization of Wind Turbines Using Helicoidal Vortex Model
,”
ASME J. Solar Energy Eng.
,
125
(
4
), pp.
418
424
.
20.
Sessarego
,
M.
,
Ramos-García
,
N.
,
Sørensen
,
J. N.
, and
Shen
,
W. Z.
,
2017
, “
Development of an Aeroelastic Code Based on Three-Dimensional Viscous–Inviscid Method for Wind Turbine Computations
,”
Wind Energy
,
20
(
7
), pp.
1145
1170
.
21.
Sprague
,
M.
,
Jonkman
,
J.
, and
Jonkman
,
B.
,
2015
, “
FAST Modular Framework for Wind Turbine Simulation: New Algorithms and Numerical Examples
,”
33rd Wind Energy Symposium
,
Kissimmee, FL
,
Jan. 5–9
.
22.
Rasmussen
,
J. T.
,
Hejlesen
,
M. M.
,
Larsen
,
A.
, and
Walther
,
J. H.
,
2010
, “
Discrete Vortex Method Simulations of the Aerodynamic Admittance in Bridge Aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
12
), pp.
754
766
.
23.
Chatelain
,
P.
,
Backaert
,
S.
,
Winckelmans
,
G.
, and
Kern
,
S.
,
2013
, “
Large Eddy Simulation of Wind Turbine Wakes
,”
Flow Turbulence Combust.
,
91
(
3
), pp.
587
605
.
24.
Papadakis
,
G.
,
2014
, “
Development of a Hybrid Compressible Vortex Particle Method and Application to External Problems Including Helicopter Flows
,” PhD thesis, National Technical University of Athens, Athens.
25.
Branlard
,
E.
,
Mercier
,
P.
,
Machefaux
,
E.
,
Gaunaa
,
M.
, and
Voutsinas
,
S.
,
2016
, “
Impact of a Wind Turbine on Turbulence: Un-freezing Turbulence by Means of a Simple Vortex Particle Approach
,”
J. Wind Eng. Ind. Aerodyn.
,
151
, pp.
37
47
.
26.
Branlard
,
E.
,
2017
,
Wind Turbine Aerodynamics and Vorticity-Based Methods
,
Springer
,
Cham
.
27.
Ramos-García
,
N.
,
Spietz
,
H. J.
,
Sørensen
,
J. N.
, and
Walther
,
J. H.
,
2018
, “
Vortex Simulations of Wind Turbines Operating in Atmospheric Conditions Using a Prescribed Velocity-Vorticity Boundary Layer Model
,”
Wind Energy
,
21
(
11
), pp.
1216
1231
.
28.
Sale
,
D.
,
Aliseda
,
A.
, and
Li
,
Y.
,
2014
, “
Simulation of Hydrokinetic Turbines in Turbulent Flow Using Vortex Particle Methods
,”
2nd Marine Energy Technology Symposium (METS2014)
,
Seattle, WA
,
Apr. 15–18
.http://hdl.handle.net/10919/49216
29.
Backaert
,
S.
,
Chatelain
,
P.
,
Winckelmans
,
G.
, and
De Visscher
,
I.
,
2014
, “Vortex Particle-Mesh Simulations of Atmospheric Turbulence Effects on Wind Turbine Blade Loading and Wake Dynamics,”
Wind Energy-Impact of Turbulence
,
M.
Hölling
,
J.
Peinke
, and
S.
Ivanell
, eds.,
Springer
,
Berlin
, pp.
135
140
.
30.
Mann
,
J.
,
1994
, “
The Spatial Structure of Neutral Atmospheric Surface-Layer Turbulence
,”
J. Fluid Mech.
,
273
, pp.
141
168
.
31.
Mann
,
J.
,
1998
, “
Wind Field Simulation
,”
Probab. Eng. Mech.
,
13
(
4
), pp.
269
282
.
32.
Mann
,
J.
,
2000
, “
The Spectral Velocity Tensor in Moderately Complex Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
88
(
2
), pp.
153
169
.
33.
Chougule
,
A.
,
Mann
,
J.
,
Segalini
,
A.
, and
Dellwik
,
E.
,
2015
, “
Spectral Tensor Parameters for Wind Turbine Load Modeling From Forested and Agricultural Landscapes
,”
Wind Energy
,
18
(
3
), pp.
469
481
.
34.
Segalini
,
A.
, and
Arnqvist
,
J.
,
2015
, “
A Spectral Model for Stably Stratified Turbulence
,”
J. Fluid Mech.
,
781
, pp.
330
352
.
35.
Nebenführ
,
B.
, and
Davidson
,
L.
,
2015
, “
Large-Eddy Simulation Study of Thermally Stratified Canopy Flow
,”
Boundary-Layer Meteorol.
,
156
(
2
), pp.
253
276
.
36.
Park
,
J.
,
Basu
,
S.
, and
Manuel
,
L.
,
2014
, “
Large-Eddy Simulation of Stable Boundary Layer Turbulence and Estimation of Associated Wind Turbine Loads
,”
Wind Energy
,
17
(
3
), pp.
359
384
.
37.
Sim
,
C.
,
Basu
,
S.
, and
Manuel
,
L.
,
2012
, “
On Space-Time Resolution of Inflow Representations for Wind Turbine Loads Analysis
,”
Energies
,
5
(
7
), pp.
2071
2092
.
38.
Nebenführ
,
B.
, and
Davidson
,
L.
,
2017
, “
Prediction of Wind-Turbine Fatigue Loads in Forest Regions Based on Turbulent LES Inflow Fields
,”
Wind Energy
,
20
(
6
), pp.
1003
1015
.
39.
Gottschall
,
J.
, and
Peinke
,
J.
,
2008
, “
How to Improve the Estimation of Power Curves for Wind Turbines
,”
Environ. Res. Lett.
,
3
(
1
), p.
015005
.
40.
Wagner
,
R.
,
Courtney
,
S. M.
,
Larsen
,
J. T.
, and
Paulsen
,
S. U.
,
2010
, “
Simulation of Shear and Turbulence Impact on Wind Turbine Performance
,” Risø-r-1722(EN), Technical University of Denmark, Kongens Lyngby.
41.
Taylor
,
G. I.
,
1938
, “
The Spectrum of Turbulence
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci.
,
164
(
919
), pp.
476
490
.
42.
Finnigan
,
J.
,
2000
, “
Turbulence in Plant Canopies
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
519
571
.
43.
Katz
,
J.
, and
Plotkin
,
A.
,
2001
,
Low-Speed Aerodynamics
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
44.
Abedi
,
H.
,
Davidson
,
L.
, and
Voutsinas
,
S.
,
2017
, “
Enhancement of Free Vortex Filament Method for Aerodynamic Loads on Rotor Blades
,”
ASME J. Solar Energy Eng.
,
139
(
3
), p.
031007
.
45.
Abedi
,
H.
,
2013
, “
Development of Vortex Filament Method for Aerodynamic Loads on Rotor Blades
,”
Licentiate thesis
,
Department of Applied Mechanics, Chalmers University of Technology
,
Göteborg, Sweden
.
46.
Abedi
,
H.
,
Davidson
,
L.
, and
Voutsinas
,
S.
,
2014
, “
Development of Free Vortex Wake Method for Aerodynamic Loads on Rotor Blades
,”
EWEA 2014 Annual Wind Energy Event
,
Barcelona, Spain
,
Mar. 10–13
.
47.
Shaw
,
R. H.
,
Den Hartog
,
G.
, and
Neumann
,
H. H.
,
1988
, “
Influence of Foliar Density and Thermal Stability on Profiles of Reynolds Stress and Turbulence Intensity in a Deciduous Forest
,”
Boundary-Layer Meteorol.
,
45
(
4
), pp.
391
409
.
48.
Nebenführ
,
B.
, and
Davidson
,
L.
,
2014
, “
Influence of a Forest Canopy on the Neutral Atmospheric Boundary Layer-A LES Study
,”
ETMM10: 10th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements
,
​​Don Carlos Resort, Marbella, Spain
,
Sept. 17–19
.
49.
Arya
,
S. P.
,
1988
, “Chapter 10 Neutral Boundary Layers,”
Introduction to Micrometeorology
, Vol.
42
,
S. P.
Arya
, ed.,
Academic Press
,
San Diego, CA
, pp.
141
156
.
50.
IEC, 61400-1:2019, “
Wind Energy Generation Systems—Part 1: Design Requirements
,” Technical Report, International Electrotechnical Commission.
51.
Davidson
,
L.
, and
Peng
,
S. H.
,
2003
, “
Hybrid LES-RANS Modelling: A One-Equation SGS Model Combined With a k–ω Model for Predicting Recirculating Flows
,”
Int. J. Numer. Methods Fluids
,
43
(
9
), pp.
1003
1018
.
52.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
NREL/TP-500-38060. Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” Technical Report.
53.
Clifton
,
A.
, and
Wagner
,
R.
,
2014
, “
Accounting for the Effect of Turbulence on Wind Turbine Power Curves
,”
J. Phys.: Conf. Ser.
,
524
, p.
012109
.
54.
Tropea
,
C.
,
Yarin
,
A. L.
, and
Foss
,
J. F.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
,
Springer
,
Berlin
.
55.
Davidson
,
L.
,
2018
,
Fluid Mechanics, Turbulent Flow and Turbulence Modeling
(
Lecture Notes, Department of Mechanics and Maritime Sciences, Division of Fluid Dynamics
),
Chalmers University of Technology
,
Göteborg
.
56.
Shaw
,
R. H.
,
Brunet
,
Y.
,
Finnigan
,
J. J.
, and
Raupach
,
M. R.
,
1995
, “
A Wind Tunnel Study of Air Flow in Waving Wheat: Two-Point Velocity Statistics
,”
Boundary-Layer Meteorol.
,
76
(
4
), pp.
349
376
.
57.
Goldschmidt
,
V. W.
,
Young
,
M. F.
, and
Ott
,
E. S.
,
1981
, “
Turbulent Convective Velocities (Broadband and Wavenumber Dependent) in a Plane Jet
,”
J. Fluid Mech.
,
105
, pp.
327
345
.
58.
Mccolgan
,
C. J.
, and
Larson
,
R. S.
,
1978
, “
Mean Velocity, Turbulence Intensity and Turbulence Convection Velocity Measurements for a Convergent Nozzle in a Free Jet Wind Tunnel
,” Document ID: 19780013115, NASA-CR-2949, PWA-5506.
You do not currently have access to this content.