Abstract

At present, only 20 percent of the incident solar radiation on the photovoltaic module is converted into electricity with the remaining dissipated as heat. The heat accumulation on the photovoltaic modules affects the electricity conversion efficiency. The photovoltaic/thermal (PV/T) solar system is considered to be one of the most promising technologies, which is proficient in producing both electrical and thermal energies. In this paper, four different PV/T configurations are numerically investigated by considering different air cooling and glazing methods. A three-dimensional numerical model is validated with both the numerical and experimental results available in the previous literatures. The performance for a typical day in August under the ambient conditions of Beijing, China, is evaluated from the energetic and exergetic points of view. The results show that the thermal, electrical, energy, and exergy efficiencies are significantly higher for the double-pass configurations than those for the single pass with air gap configurations. For the double-pass single-glazed PV/T air collector, the average daily overall energy and exergy efficiencies are 85.06 and 13.92%, respectively. The overall energy and exergy efficiencies are increased by removing the bottom glass cover for both the single pass with air gap configuration and the double-pass configuration. The double-pass single-glazed configuration achieves the highest daily average energetic, exergetic, thermal, and electrical outputs among the proposed configurations. On contrary, the single-pass double glazed with air gap configuration exhibits the lowest thermal and electrical efficiencies.

References

1.
Zhu
,
W. Q.
, and
Wang
,
Q.
,
2021
, “
Development of New Technological Routes for Fossil Energy Utilization Under the Goal of Carbon Neutral
,”
Power Gener. Technol.
,
42
(
1
), pp.
3
7
.
2.
Grossman
,
G.
, and
Zaltash
,
A.
,
2001
, “
ABSIM—Modular Simulation of Advanced Absorption Systems
,”
Int. J. Refrig.
,
24
(
6
), pp.
531
543
.
3.
Liu
,
T. X.
,
Liu
,
Q. B.
,
Sui
,
J.
, and
Zhang
,
T. Y.
,
2020
, “
Thermodynamic Performance and Carbon Emission Analysis of Distributed Energy Supply System Based on Solar Thermochemistry
,”
Power Gener. Technol.
,
41
(
3
), pp.
212
219
.
4.
Zhang
,
Z. Y.
,
Ju
,
X.
,
Pan
,
X. Y.
,
Yang
,
Y.
, and
Du
,
X. Z.
,
2020
, “
Photovoltaic/Concentrated Solar Power Hybrid Technology and Its Commercial Application
,”
Power Gener. Technol.
,
41
(
3
), pp.
220
230
.
5.
Sarhaddi
,
F.
,
Farahat
,
S.
,
Ajam
,
H.
,
Behzadmehr
,
A.
, and
Adeli
,
M. M.
,
2010
, “
An Improved Thermal and Electrical Model for a Solar Photovoltaic Thermal (PV/T) Air Collector
,”
Appl. Energy
,
87
(
7
), pp.
2328
2339
.
6.
Wang
,
Z. Z.
,
Huang
,
P. R.
,
Wei
,
G. S.
,
Cui
,
L.
,
Xu
,
C.
, and
Du
,
X. Z.
,
2021
, “
Research Progress of Solid-Gas Two-Phase Chemical Heat Storage Technology for Solar Thermal Power Generation
,”
Power Gener. Technol.
,
42
(
2
), pp.
238
246
.
7.
Wolf
,
M.
,
1976
, “
Performance Analyses of Combined Heating and Photovoltaic Power Systems for Residences
,”
Energy Convers.
,
16
(
1–2
), pp.
79
90
.
8.
Kern
,
J. E. C.
, and
Russell
,
M. C.
,
1978
, “
Combined Photovoltaic and Thermal Hybrid Collector Systems
,”
Proceedings of 13th IEEE Photovoltaic Specialists Conference
,
Washington, DC
,
June 4–8
, pp.
1153
1157
.
9.
Fujisawa
,
T.
, and
Tani
,
T.
,
1997
, “
Annual Exergy Evaluation on Photovoltaic-Thermal Hybrid Collector
,”
Sol. Energy Mater. Sol. Cells
,
47
(
1–4
), pp.
135
148
.
10.
Rahou
,
M.
,
Othman
,
M.
,
Mat
,
S.
, and
Ibrahim
,
A.
,
2014
, “
Performance Study of a Photovoltaic Thermal System With an Oscillatory Flow Design
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011012
.
11.
Chow
,
T. T.
,
Pei
,
G.
,
Fong
,
K.
,
Lin
,
Z.
,
Chan
,
A.
, and
Ji
,
J.
,
2009
, “
Energy and Exergy Analysis of Photovoltaic–Thermal Collector With and Without Glass Cover
,”
Appl. Energy
,
86
(
3
), pp.
310
316
.
12.
Yazdanpanahi
,
J.
,
Sarhaddi
,
F.
, and
Adeli
,
M. M.
,
2015
, “
Experimental Investigation of Exergy Efficiency of a Solar Photovoltaic Thermal (PVT) Water Collector Based on Exergy Losses
,”
Sol. Energy
,
118
(
8
), pp.
197
208
.
13.
Kim
,
D.-J.
,
Kim
,
D. H.
,
Bhattarai
,
S.
, and
Oh
,
J.-H.
,
2011
, “
Simulation and Model Validation of the Surface Cooling System for Improving the Power of a Photovoltaic Module
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
041012
.
14.
Jakhar
,
S.
,
Soni
,
M. S.
, and
Boehm
,
R. F.
,
2018
, “
Thermal Modeling of a Rooftop Photovoltaic/Thermal System With Earth Air Heat Exchanger for Combined Power and Space Heating
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031011
.
15.
Zondag
,
H. A.
,
de Vries
,
D. W.
,
van Helden
,
W. G. J.
,
van Zolingen
,
R. J. C.
, and
van Steenhoven
,
A. A.
,
2003
, “
The Yield of Different Combined PV-Thermal Collector Designs
,”
Sol. Energy
,
74
(
3
), pp.
253
269
.
16.
Tripanagnostopoulos
,
Y.
,
Nousia
,
T.
,
Souliotis
,
M.
, and
Yianoulis
,
P.
,
2002
, “
Hybrid Photovoltaic/Thermal Solar Systems
,”
Sol. Energy
,
72
(
3
), pp.
217
234
.
17.
Salem Ahmed
,
M.
,
Mohamed
,
A.
, and
Maghrabie
,
H. M.
,
2019
, “
Performance Evaluation of Combined Photovoltaic Thermal Water Cooling System for Hot Climate Regions
,”
ASME J. Sol. Energy Eng.
,
141
(
4
), p.
041010
.
18.
Colangelo
,
G.
,
Romano
,
D.
, and
Marco Tina
,
G.
,
2015
, “
Performance Evaluation of a New Type of Combined Photovoltaic–Thermal Solar Collector
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041012
.
19.
Joshi
,
A.
,
Tiwari
,
A.
,
Tiwari
,
G.
,
Dincer
,
I.
, and
Reddy
,
B.
,
2009
, “
Performance Evaluation of a Hybrid Photovoltaic Thermal (PV/T)(Glass-to-Glass) System
,”
Int. J. Therm. Sci.
,
48
(
1
), pp.
154
164
.
20.
Pang
,
W.
,
Zhang
,
Y.
,
Cui
,
Y.
,
Yu
,
H.
,
Liu
,
Y.
, and
Yan
,
H.
,
2018
, “
Building Integrated Photovoltaic Module-Based on Aluminum Substrate With Forced Water Cooling
,”
ASME J. Sol. Energy Eng.
,
140
(
2
), p.
021005
.
21.
Delisle
,
V.
, and
Kummert
,
M.
,
2012
, “
Experimental Study to Characterize the Performance of Combined Photovoltaic/Thermal Air Collectors
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
031010
.
22.
Touafek
,
K.
,
Haddadi
,
M.
, and
Malek
,
A.
,
2013
, “
Design and Modeling of a Photovoltaic Thermal Collector for Domestic Air Heating and Electricity Production
,”
Energy Build.
,
59
(
4
), pp.
21
28
.
23.
Kazemian
,
A.
,
Hosseinzadeh
,
M.
,
Sardarabadi
,
M.
, and
Passandideh-Fard
,
M.
,
2018
, “
Effect of Glass Cover and Working Fluid on the Performance of Photovoltaic Thermal (PVT) System: An Experimental Study
,”
Sol. Energy
,
173
(
10
), pp.
1002
1010
.
24.
Garg
,
H.
, and
Adhikari
,
R.
,
1998
, “
Transient Simulation of Conventional Hybrid Photovoltaic/Thermal (PV/T) Air Heating Collectors
,”
Int. J. Energy Res.
,
22
(
6
), pp.
547
562
.
25.
Gholampour
,
M.
, and
Ameri
,
M.
,
2014
, “
Energy and Exergy Study of Effective Parameters on Performance of Photovoltaic/Thermal Natural Air Collectors
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031001
.
26.
Slimani
,
M. E. A.
,
Amirat
,
M.
,
Kurucz
,
I.
,
Bahria
,
S.
,
Hamidat
,
A.
, and
Chaouch
,
W. B.
,
2017
, “
A Detailed Thermal-Electrical Model of Three Photovoltaic/Thermal (PV/T) Hybrid Air Collectors and Photovoltaic (PV) Module: Comparative Study Under Algiers Climatic Conditions
,”
Energy Convers. Manage.
,
133
(
2
), pp.
458
476
.
27.
Slimani
,
M. E. A.
,
Amirat
,
M.
,
Bahria
,
S.
,
Kurucz
,
I.
, and
Sellami
,
R.
,
2016
, “
Study and Modeling of Energy Performance of a Hybrid Photovoltaic/Thermal Solar Collector: Configuration Suitable for an Indirect Solar Dryer
,”
Energy Convers. Manage.
,
125
(
10
), pp.
209
221
.
28.
Gholampour
,
M.
, and
Ameri
,
M.
,
2015
, “
Design Considerations of Photovoltaic/Thermal Air Systems: Energetic and Exergetic Approaches
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031005
.
29.
Singh
,
S.
,
Agrawal
,
S.
, and
Avasthi
,
D.
,
2016
, “
Design, Modeling and Performance Analysis of Dual Channel Semitransparent Photovoltaic Thermal Hybrid Module in the Cold Environment
,”
Energy Convers. Manage.
,
114
(
4
), pp.
241
250
.
30.
Choi
,
H.-U.
, and
Choi
,
K.-H.
,
2020
, “
Performance Evaluation of PV/T Air Collector Having a Single-Pass Double-Flow Air Channel and Non-Uniform Cross-Section Transverse Rib
,”
Energies
,
13
(
9
), p.
2203
.
31.
Anderson
,
J. D.
,
1992
, “
Governing Equations of Fluid Dynamics
,”
Comput. Fluid Dyn.
, pp.
15
51
.
32.
Bender
,
E.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
V. S. V.
Patankar
, ed.,
McGraw-Hill Book Company
,
New York
.
33.
Wang
,
S.-L.
,
Chen
,
L.-Y.
,
Zhang
,
B.-X.
,
Yang
,
Y.-R.
, and
Wang
,
X.-D.
,
2020
, “
A New Design of Double-Layered Microchannel Heat Sinks With Wavy Microchannels and Porous-Ribs
,”
J. Therm. Anal. Calorim.
,
1
(
1
), pp.
547
558
.
34.
Batchelor
,
G.
,
1977
, “
The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,”
J. Fluid Mech.
,
83
(
1
), pp.
97
117
.
35.
Mohammadi
,
B.
, and
Pironneau
,
O.
,
1993
,
Analysis of the K-Epsilon Turbulence Model
,
John Wiley and Sons
,
Chichester
.
36.
Watmuff
,
J.
,
Charters
,
W.
, and
Proctor
,
D.
,
1977
, “
Solar and Wind Induced External Coefficients-Solar Collectors
” Cooperation Mediterraneenne pour l'Energie Solaire, p.
56
.
37.
Zhou
,
J.
,
Yi
,
Q.
,
Wang
,
Y.
, and
Ye
,
Z.
,
2015
, “
Temperature Distribution of Photovoltaic Module Based on Finite Element Simulation
,”
Sol. Energy
,
111
(
1
), pp.
97
103
.
You do not currently have access to this content.