Abstract

Photovoltaic (PV) modules installed in the field generate electrical power under different meteorological and operational conditions; therefore, maintenance of the modules is crucial for the longevity of the PV modules. Thermal infrared (TIR) imaging is a widely used monitoring technique for quality checks of PV modules in plants. It is ideally conducted on operational PV modules under steady ambient conditions; however, PV modules operate under dynamic climatic conditions which influence the overall operation of all solar cells and modules. The dynamic nature of thermal signatures was observed on TIR images when monocrystalline PV modules operated under varying electrical loads and irradiance. A change in operating conditions affected the level of current mismatch between cells since at high irradiance of about 1000 watts per square meter (W m−2) and while operating close to short circuit current at reduced load, the PV cells generated a higher current which led to significant current mismatch. This resulted in several abnormally hot cells being identified on TIR images. Under lower irradiance and larger electrical loads, fewer hot cells were observed and cracked cells (identified through Electroluminescence (EL)) appeared as good cells due to minimal current mismatch. The effectiveness of TIR imaging to reveal underperforming defective cells as hot cells depends on the operating conditions and can mislead decision-making when PV module maintenance is carried out. This work gives valuable information which can be of importance in improving the maintenance systems of PV modules when TIR imaging is conducted.

References

1.
Kimera
,
R.
,
Okou
,
R.
,
Sebitosi
,
A. B.
, and
Awodele
,
K. O.
,
2014
, “
Considerations for a Sustainable Hybrid Mini-Grid System: A Case for Wanale Village, Uganda
,”
J. Energy Southern Africa
,
25
(
1
), pp.
33
43
. ISSN2413-3051. 10.17159/2413-3051/2014/v25i1a2686
2.
Messenger
,
R. A.
, and
Ventre
,
J.
,
2005
,
Photovoltaic Systems Engineering
, 2nd ed.,
CRC Press
,
Boca Raton, New York
, Chap. 3. ISBN 0-203-58847-9
3.
Saravanan
,
S.
, and
Ramesh
,
B. N.
,
2016
, “
Maximum Power Point Tracking Algorithms for Photovoltaic System—A Review
,”
Renewable Sustainable Energy Rev.
,
57
(
C
), pp.
192
204
. 10.1016/j.rser.2015.12.105
4.
Rekioua
,
D.
, and
Matagne
,
E.
,
2012
,
Optimization of Photovoltaic Power Systems: Modelization, Simulation and Control
, 1st ed.,
Springer-Verlag London Limited
,
London Dordrecht Heidelberg, New York
, Chap. 4. DOI: 10.1007/978-1-4471-2403-0
5.
Zandi
,
Z.
, and
Mazinan
,
A. H.
,
2019
, “
Maximum Power Point Tracking of the Solar Power Plants in Shadow Mode Through Artificial Neural Network
,”
Complex Intell. Syst.
,
5
(
3
), pp.
315
330
. 10.1007/s40747-019-0096-1
6.
Ramadan
,
J. M.
,
Goma
,
M. R.
,
Al-Dhaifallah
,
M.
, and
Rezk
,
H.
,
2020
, “
Environmental Impacts on the Performance of Solar Photovoltaic Systems
,”
Sustainability
,
12
(
2
), pp.
1
17
. 10.3390/su12020608
7.
Dhimish
,
M.
,
Holmes
,
V.
,
Mehrdadi
,
B.
, and
Dales
,
M.
,
2017
, “
The Impact of Cracks on Photovoltaic Power Performance
,”
J. Sci.: Advanced Materials and Devices
,
2
(
2
), pp.
199
209
. 10.1016/j.jsamd.2017.05.005
8.
Abdin
,
Z.
,
Kumar
,
A.
, and
Haque
,
A.
,
2017
, “
Scheme for Predictive Fault Diagnosis in Photo-Voltaic Modules Using Thermal Imaging
,”
Infrared Phys. Technol.
,
83
(
C
), pp.
182
187
. 10.1016/j.infrared.2017.04.015
9.
Jahn
,
U.
,
Herz
,
M.
,
Kontges
,
M.
,
Parlevliet
,
D.
,
Paggi
,
M.
,
Tsanakas
,
I.
,
Stein, Joshua
,
S.
,
Berger
,
K. A.
,
Ranta
,
S.
,
French
,
R. H.
,
Richter
,
M.
, and
Tanahashi
,
T.
,
2018
, “Review on Infrared and Electroluminescence Imaging for PV Field Applications,” IEA-Photovoltaic Power Systems Programme, IEA-PVPS. https://iea-pvps.org/wp-content/uploads/2020/01/Review_on_IR_and_EL_Imaging_for_PV_Field_Applications_by_Task_13.pdf.
10.
Zefri
,
Y.
,
Elkettani
,
A.
,
Sebari
,
I.
, and
Ait Lamallam
,
S.
,
2018
, “
Thermal Infrared and Visual Inspection of Photovoltaic Installations by UAV Photogrammetry—Application Case: Morocco
,”
Drones
,
2
(
4
), p.
41
. 10.3390/drones2040041
11.
Köntges
,
M.
,
Kurtz
,
S.
,
Packard
,
C. E.
,
Jahn
,
U.
,
Berger
,
K.
,
Kato
,
K.
,
Friesen
,
T.
,
Liu
,
H.
, and
Van Iseghem
,
M.
,
2014
, “Review of failures of photovoltaic modules,” IEA-Photovoltaic Power Systems Programme, IEA-PVPS. https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_T13-01_2014_Review_of_Failures_of_Photovoltaic_Modules_Final.pdf.
12.
Berardone
,
I.
,
Garcia
,
J. L.
, and
Paggi
,
M.
,
2018
, “
Analysis of Electroluminescence and Infrared Thermal Images of Monocrystalline Silicon Photovoltaic Modules After 20 Years of Outdoor use in a Solar Vehicle
,”
Sol. Energy
,
173
, pp.
478
486
. 10.1016/j.solener.2018.07.055
13.
Vumbugwa
,
M.
,
Crozier McCleland
,
J. L.
,
van Dyk
,
E. E.
,
Vorster
,
F. J.
, and
Serameng
,
T. J.
,
2020
, “
Effects of Current Mismatch due to Uneven Soiling on the Performance of Multi-Crystalline Silicon Module Strings
,”
J. Energy Southern Africa
,
31
(
1
), pp.
62
72
. 10.17159/2413-3051/2020/v31i1a7571
14.
Crozier
,
J. L.
,
van Dyk
,
E. E.
, and
Vorster
,
F. J.
,
2015
, “
Identification and Characterisation of Performance Limiting Defects and Cell Mismatch in Photovoltaic Modules
,”
J. Energy Southern Africa
,
26
(
3
), pp.
19
26
. 10.17159/2413-3051/2015/v26i3a2126
You do not currently have access to this content.