Abstract

This paper analyzes the direct solar vapor generation of acetone by solar radiation falling on the heat pipes of an evacuated tube collector (ETC) that can activate a domestic scale organic Rankine cycle (ORC). The irradiance from the sun determines the mass flow of acetone along the horizontal manifold of the ETC to produce vapor at the collector outlet. A scilab code is developed to simulate the flow of acetone inside the manifold where subcooled acetone undergoes heating and evaporation process. Simulation is run from 60 °C to a saturation temperature of 120 °C at a pressure of 604 kPa, vapor qualities from 1% to 100%, and solar radiation from 300 to 1100 W/m2. The Kattan–Thome–Favrat flow boiling model is used to obtain the two-phase local heat transfer coefficients along the horizontal manifold, and it is validated with the numerical and experimental values of ammonia. The ORC system can generate 218 kWh/year of electrical energy, a thermal power capacity of 1616 kWh/year and achieve an ORC efficiency of 84.4%. The solar-ORC has a thermal efficiency of 3.25% and an exergy efficiency of 21.3% with a solar collector of 2.84 m2.

References

1.
Iqbal
,
A. A.
, and
Al-Alili
,
A.
,
2019
, “
Review of Solar Cooling Technologies in the MENA Region
,”
ASME J. Solar Energy Eng.
,
141
(
1
), p.
010801
. 10.1115/1.4041159
2.
Kang
,
S. H.
,
2012
, “
Design and Experimental Study of ORC (Organic Rankine Cycle) and Radial Turbine Using R245fa Working Fluid
,”
Energy
,
41
(
1
), pp.
514
524
. 10.1016/j.energy.2012.02.035
3.
Quoilin
,
S.
,
Lemort
,
V.
, and
Lebrun
,
J.
,
2010
, “
Experimental Study and Modeling of an Organic Rankine Cycle Using Scroll Expander
,”
Appl. Energy
,
87
(
4
), pp.
1260
1268
. 10.1016/j.apenergy.2009.06.026
4.
Tiwari
,
D.
,
Sherwani
,
A. F.
,
Arora
,
A.
, and
Haleem
,
A.
,
2017
, “
Thermo-Economic and Multiobjective Optimization of Saturated and Superheated Organic Rankine Cycle Using a Low-Grade Solar Heat Source
,”
J. Renew. Sustain. Energy
,
9
(
5
), p.
054701
. 10.1063/1.5005551
5.
Tocci
,
L.
,
Pal
,
T.
,
Pesmazoglou
,
I.
, and
Franchetti
,
B.
,
2017
, “
Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review
,”
Energies
,
10
(
4
), p.
413
. 10.3390/en10040413
6.
Wang
,
H.
,
Peterson
,
R.
,
Harada
,
K.
,
Miller
,
E.
,
Ingram-Goble
,
R.
,
Fisher
,
L.
,
Yih
,
J.
, and
Ward
,
C.
,
2011
, “
Performance of a Combined Organic Rankine Cycle and Vapor Compression Cycle for Heat Activated Cooling
,”
Energy
,
36
(
1
), pp.
447
458
. 10.1016/j.energy.2010.10.020
7.
Delgado-Torres
,
A. M.
, and
García-Rodríguez
,
L.
,
2010
, “
Analysis and Optimization of the Low-Temperature Solar Organic Rankine Cycle (ORC)
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2846
2856
. 10.1016/j.enconman.2010.06.022
8.
Nafey
,
A. S.
, and
Sharaf
,
M. A.
,
2010
, “
Combined Solar Organic Rankine Cycle With Reverse Osmosis Desalination Process: Energy, Exergy, and Cost Evaluations
,”
Renew. Energy
,
35
(
11
), pp.
2571
2580
. 10.1016/j.renene.2010.03.034
9.
Eck
,
M.
, and
Steinmann
,
W.-D.
,
2002
, “
Direct Steam Generation in Parabolic Troughs: First Results of the DISS Project
,”
ASME J. Solar Energy Eng. Trans.
,
124
(
2
), pp.
134
139
. 10.1115/1.1464125
10.
Valenzuela
,
L.
,
Zarza
,
E.
,
Berenguel
,
M.
, and
Camacho
,
E. F.
,
2004
, “
Direct Steam Generation Boilers
,”
IEEE Control Syst.
,
24
(
2
), pp.
15
29
. 10.1109/MCS.2004.1275429
11.
Aurousseau
,
A.
,
Vuillerme
,
V.
, and
Bezian
,
J.-J.
,
2016
, “
Control Systems for Direct Steam Generation in Linear Concentrating Solar Power Plants—A Review
,”
Renew. Sustain. Energy Rev.
,
56
, pp.
611
630
. 10.1016/j.rser.2015.11.083
12.
Zapata
,
J. I.
,
2014
, “
Full State Feedback Control of Steam Temperature in a Once-Through Direct Steam Generation Receiver Powered by a Paraboloidal Dish
,”
ASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated With the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
,
Boston, MA
,
June 30–July 2
, pp.
1
13
.
13.
Eck
,
M.
, and
Hirsch
,
T.
,
2007
, “
Dynamics and Control of Parabolic Trough Collector Loops With Direct Steam Generation
,”
Sol. Energy
,
81
(
2
), pp.
268
279
. 10.1016/j.solener.2006.01.008
14.
Niu
,
X. D.
,
Yamaguchi
,
H.
,
Zhang
,
X. R.
,
Iwamoto
,
Y.
, and
Hashitani
,
N.
,
2011
, “
Experimental Study of Heat Transfer Characteristics of Supercritical CO2 Fluid in Collectors of Solar Rankine Cycle System
,”
Appl. Therm. Eng.
,
31
(
6–7
), pp.
1279
1285
. 10.1016/j.applthermaleng.2010.12.034
15.
Zhang
,
X. R.
,
Yamaguchi
,
H.
,
Uneno
,
D.
,
Fujima
,
K.
,
Enomoto
,
M.
, and
Sawada
,
N.
,
2006
, “
Analysis of a Novel Solar Energy-Powered Rankine Cycle for Combined Power and Heat Generation Using Supercritical Carbon Dioxide
,”
Renew. Energy
,
31
(
12
), pp.
1839
1854
. 10.1016/j.renene.2005.09.024
16.
Freeman
,
J.
,
Hellgardt
,
K.
, and
Markides
,
C. N.
,
2015
, “
An Assessment of Solar-Powered Organic Rankine Cycle Systems for Combined Heating and Power in UK Domestic Applications
,”
Appl. Energy
,
138
, pp.
605
620
. 10.1016/j.apenergy.2014.10.035
17.
Khaled
,
M. B.
, and
Assem
,
N. A.
,
2016
, “
Direct Solar Steam Generation Inside Evacuated Tube Absorber
,”
AIMS Energy
,
4
(
6
), pp.
921
935
. 10.3934/energy.2016.6.921
18.
Apricus
,
2016
,
ETC Solar Collector Product Overview
,
Apricus
,
Seven Hills, OH
, pp.
1
23
.
19.
Leal-Chavez
,
D.
,
Beltran-Chacon
,
R.
,
Cardenas-Terrazas
,
P.
,
Islas
,
S.
, and
Velázquez
,
N.
,
2019
, “
Design and Analysis of the Domestic Micro-Cogeneration Potential for an ORC System Adapted to a Solar Domestic Hot Water System
,”
Entropy
,
21
(
9
), p.
911
. 10.3390/e21090911
20.
Mohammed
,
H. I.
,
Giddings
,
D.
, and
Walker
,
G. S.
,
2019
, “
CFD Multiphase Modelling of the Acetone Condensation and Evaporation Process in a Horizontal Circular Tube
,”
Int. J. Heat Mass Transfer
,
134
, pp.
1159
1170
. 10.1016/j.ijheatmasstransfer.2019.02.062
21.
Ordaz-Flores
,
A.
,
García-Valladares
,
O.
, and
Gómez
,
V. H.
,
2012
, “
Findings to Improve the Performance of a Two-Phase Flat Plate Solar System, Using Acetone and Methanol as Working Fluids
,”
Sol. Energy
,
86
(
4
), pp.
1089
1098
. 10.1016/j.solener.2011.10.031
22.
Zürcher
,
O.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1999
, “
Evaporation of Ammonia in a Smooth Horizontal Tube: Heat Transfer Measurements and Predictions
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
89
101
. 10.1115/1.2825974
23.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library Coolprop
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
. 10.1021/ie4033999
24.
Riffat
,
S. B.
,
Zhao
,
X.
,
Boukhanouf
,
R.
, and
Doherty
,
P. S.
,
2005
, “
Theoretical and Experimental Investigation of a Novel Hybrid Heat-Pipe Solar Collector
,”
Int. J. Green Energy
,
1
(
4
), pp.
515
542
. 10.1081/ge-200038727
25.
Qu
,
M.
,
Archer
,
D. H.
, and
Yin
,
H.
,
2007
, “
A Linear Parabolic Trough Solar Collector Performance Model
,”
Proceedings of the Energy Sustainability Conference 2007
,
Long Beach, CA
,
June 27–30
, pp.
1
8
.
26.
Quoilin
,
S.
,
Orosz
,
M.
,
Hemond
,
H.
, and
Lemort
,
V.
,
2011
, “
Performance and Design Optimization of a Low-Cost Solar Organic Rankine Cycle for Remote Power Generation
,”
Sol. Energy
,
85
(
5
), pp.
955
966
. 10.1016/j.solener.2011.02.010
27.
TÜV Rheinland
,
2014
,
Test Report: Qualification of a Solar Collector in accordance with DIN EN 12975-1: 2011; DIN EN 12975-2: 2006 methods
,
TÜV Rheinland
,
Shanghai, China
.
28.
Manohar
,
K.
, and
Ramroop
,
K.
,
2010
, “
A Comparison of Correlations for Heat Transfer From Inclined Pipes
,”
Int. J. Eng.
,
4
, pp.
268
278
.
29.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
219
228
. 10.1115/1.2910348
30.
Bejan
,
A.
, and
Kraus
,
A. D.
,
2003
,
Heat Transfer Handbook Mechanical Engineering
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
31.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1998
, “
Flow Boiling in Horizontal Tubes: Part 1—Development of a Diabatic Two-Phase Flow Pattern Map
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
140
147
. 10.1115/1.2830037
32.
Wojtan
,
L.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
,
2005
, “
Investigation of Flow Boiling in Horizontal Tubes: Part II—Development of a New Heat Transfer Model for Stratified-Wavy, Dryout and Mist Flow Regimes
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2970
2985
. 10.1016/j.ijheatmasstransfer.2004.12.013
33.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
,
1970
, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
383
393
. 10.1016/0017-9310(70)90114-6
34.
Cooper
,
M. G.
,
1984
, “
Heat Flow Rates in Saturated Nucleate Pool Boiling—A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
,
16
, pp.
157
239
. 10.1016/S0065-2717(08)70205-3
35.
White
,
M. T.
,
Oyewunmi
,
O. A.
,
Chatzopoulou
,
M. A.
,
Pantaleo
,
A. M.
,
Haslam
,
A. J.
, and
Markides
,
C. N.
,
2018
, “
Computer-Aided Working-Fluid Design, Thermodynamic Optimisation and Thermoeconomic Assessment of ORC Systems for Waste-Heat Recovery
,”
Energy
,
161
, pp.
1181
1198
. 10.1016/j.energy.2018.07.098
36.
Helvaci
,
H. U.
, and
Khan
,
Z. A.
,
2016
, “
Experimental Study of Thermodynamic Assessment of a Small Scale Solar Thermal System
,”
Energy Convers. Manage.
,
117
, pp.
567
576
. 10.1016/j.enconman.2016.03.050
37.
Canbolat
,
A. S.
,
Bademlioglu
,
A. H.
, and
Kaynakli
,
O.
,
2019
, “
A Modeling of Electricity Generation by Using Geothermal Assisted Organic Rankine Cycle With Internal Heat Recovery
,”
Energy Sources Part A: Recov. Util. Environ. Eff.
, pp.
1
17
. 10.1080/15567036.2019.1684598
38.
Yagoub
,
W.
,
Doherty
,
P.
, and
Riffat
,
S. B.
,
2006
, “
Solar Energy-Gas Driven Micro-CHP System for an Office Building
,”
Appl. Therm. Eng.
,
26
(
14–15
), pp.
1604
1610
. 10.1016/j.applthermaleng.2005.11.021
39.
Saitoh
,
T.
,
Yamada
,
N.
, and
Wakashima
,
S.
,
2007
, “
Solar Rankine Cycle System Using Scroll Expander
,”
J. Environ. Eng.
,
2
(
4
), pp.
708
719
. 10.1299/jee.2.708
40.
Twomey
,
B.
,
Jacobs
,
P. A.
, and
Gurgenci
,
H.
,
2013
, “
Dynamic Performance Estimation of Small-Scale Solar Cogeneration With an Organic Rankine Cycle Using a Scroll Expander
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1307
1316
. 10.1016/j.applthermaleng.2012.06.054
You do not currently have access to this content.