This work is concerned with an experimental design for generating power from thermoelectric generator (TEG) and linear Fresnel lens collector with one-axis solar tracking system. Main purpose of this experimental design is to measure the performance of the TEG with linear Fresnel lens collector. This work also aims to create a mathematical model by using adaptive neuro fuzzy inference system (ANFIS) model so that the electrical production estimates of the constructed system can be made for a given data set. For this reason, two individual systems, selective surface adapted for achieving medium temperature scale and nonselective surface for low temperatures, were constructed. There are two different coolant systems, which are passive and active, to create effective open circuit voltage values. Experimental results show that the maximum open circuit voltages were obtained as 0.442 V and 1.413 V for experimental system with selective surface adapted, as 0.341 V and 0.942 V with nonselective surface adapted when the received radiated power on Fresnel lens was measured nearly 625 W/m2 on average in the noon time. Experimental values were collected for the selective surface adapted system on 11th and 12th of September, 2017 and for nonselective surface on 13th of September, 2017, respectively, in Samsun/Turkey with location 41°14′N and 36°26′E. The collected data such as solar irradiation, wind speed, ambiance temperature, and open circuit voltage were used for (ANFIS) modeling. Obtained result shows that experimental calculations and modeling are consistent with each other.

References

1.
Peura
,
P.
, and
Hyttinen
,
T.
,
2011
, “
The Potential and Economics of Bioenergy in Finland
,”
J. Cleaner Prod.
,
19
(
9–10
), pp.
927
945
.
2.
Khamooshi
,
M.
,
Salati
,
H.
,
Egelioğlu
,
F.
,
Faghiri
,
A. H.
,
Tarabishi
,
J.
, and
Babadi
,
S.
,
2014
, “
A Review of Solar Photovoltaic Concentrators
,”
Int. J. Photoenergy
,
2014
, p. 958521.
3.
Kumar
,
V.
,
Shrivastava
,
R. L.
, and
Untawale
,
S. P.
,
2015
, “
Fresnel Lens: A Promising Alternative of Reflectors in Concentrated Solar Power
,”
Renewable Sustainable Energy Rev.
,
44
, pp.
376
390
.
4.
Xie
,
W. T.
,
Dai
,
Y. J.
,
Wang
,
R. Z.
, and
Sumathy
,
K.
,
2011
, “
Concentrated Solar Energy Applications Using Fresnel Lenses: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
2588
2606
.
5.
Sobhansarbandi
,
S.
,
Martinez
,
P. M.
,
Papadimitratos
,
A.
,
Zakhidov
,
A.
, and
Hassanipour
,
F.
,
2017
, “
Evacuated Tube Solar Collector With Multifunctional Absorber Layers
,”
Sol. Energy
,
146
, pp.
342
350
.
6.
Swanson
,
R. M.
,
2000
, “
The Promise of Concentrators
,”
Prog. Photovolt. Res. Appl.
,
8
(1), pp.
93
111
.
7.
Rowe, D. M., ed.,
1995
,
Handbook of Thermoelectrics
,
CRC Press
, Boca Raton, FL.
8.
Özdemir
,
A. E.
,
Köysal
,
Y.
,
Özbas
,
E.
, and
Atalay
,
T.
,
2015
, “
The Experimental Design of Solar Heating Thermoelectric Generator With Wind Cooling Chimney
,”
Energy Convers. Manage.
,
98
, pp.
127
133
.
9.
Zhai
,
H.
,
Dai
,
Y. J.
,
Wu
,
J. Y.
,
Wang
,
R. Z.
, and
Zhang
,
L. Y.
,
2010
, “
Experimental Investigation and Analysis on a Concentrating Solar Collector Using Linear Fresnel Lens
,”
Energy Convers. Manage.
,
51
(
1
), pp.
48
55
.
10.
Singh
,
P. L.
,
Ganesan
,
S.
, and
Yàdav
,
G. C.
,
1999
, “
Performance Study of a Linear Fresnel Concentrating Solar Device
,”
Renewable Energy
,
18
(
3
), pp.
409
416
.
11.
Li
,
M.
, and
Wang
,
L. L.
,
2006
, “
Investigation of Evacuated Tube Heated by Solar Trough Concentrating System
,”
Energy Convers. Manage.
,
47
(
20
), pp.
3591
3601
.
12.
Al-Jumaily
,
K. E. J.
, and
Al-Kaysi
,
M. A. K. A.
,
1998
, “
The Study of the Performance and Efficiency of Flat Linear Fresnel Lens Collector With Sun Tracking System in Iraq
,”
Renewable Energy
,
14
(
1–4
), pp.
41
48
.
13.
Orr
,
B.
, and
Akbarzadeh
,
A.
,
2017
, “
Prospects of Waste Heat Recovery and Power Generation Using Thermoelectric Generators
,”
Energy Procedia
,
110
, pp.
250
255
.
14.
Remeli
,
M. F.
,
Date
,
A.
,
Orr
,
B.
,
Ding
,
L. C.
,
Singh
,
B.
,
Affandi
,
N. D. N.
, and
Akbarzadeh
,
A.
,
2016
, “
Experimental Investigation of Combined Heat Recovery and Power Generation Using a Heat Pipe Assisted Thermoelectric Generator System
,”
Energy Convers. Manage.
,
111
, pp.
147
157
.
15.
Yodovard
,
P.
,
Khedari
,
J.
, and
Hirunlabh
,
J.
,
2001
, “
The Potential of Waste Heat Thermoelectric Power Generation From Diesel Cycle and Gas Turbine Cogeneration Plants
,”
Energy Sources
,
23
(
3
), pp.
213
224
.
16.
Date
,
A.
,
Date
,
A.
,
Dixon
,
C.
, and
Akbarzadeh
,
A.
,
2014
, “
Theoretical and Experimental Study on Heat Pipe Cooled Thermoelectric Generators With Water Heating Using Concentrated Solar Thermal Energy
,”
Sol. Energy
,
105
, pp.
656
668
.
17.
Liu
,
Z.
,
Zhu
,
S.
,
Ge
,
Y.
,
Shan
,
F.
,
Zeng
,
L.
, and
Liu
,
W.
,
2017
, “
Geometry Optimization of Two-Stage Thermoelectric Generators Using Simplified Conjugate-Gradient Method
,”
Appl. Energy
,
190
, pp.
540
552
.
18.
Eswaramoorthy
,
M.
,
Shanmugam
,
S.
, and
Veerappan
,
A. R.
,
2013
, “
Experimental Study on Solar Parabolic Dish Thermoelectric Generator
,”
Int. J. Energy Eng. (IJEE)
,
3
(
3
), pp.
62
66
.
19.
TEC, 2017, “
Specifications TEG Module TEG1-12611-8.0
,” TECTEG MFR, Aurora, ON, Canada, accessed Aug. 13,
2017
, http://tecteg.com/wp-content/uploads/2014/09/SpecTEG1-12611-8.0Thermoelectric-generator.pdf
20.
Roger
,
A.
,
2004
,
Messenger and Jerry Ventre, Photovoltaic Systems Engineering
,
CRC Press
,
London
.
21.
Nia
,
M. H.
,
Nejad
,
A. A.
,
Goudarzi
,
A.
,
Valizadeh
,
M.
, and
Samadian
,
P.
,
2014
, “
Cogeneration Solar System Using Thermoelectric Module and Fresnel Lens
,”
Energy Convers. Manage.
,
84
, pp.
305
310
.
22.
CATRENE Working Group on Energy Autonomous Systems
,
2009
,
Energy Autonomous Systems: Future Trends in Devices, Technology, and Systems
,
CATRENE Leuven
, Paris, France.
23.
Mastbergen
,
D.
,
2008
, “
Development and Optimization of a Stove-Powered Thermoelectric Generator
,” Ph.D. thesis, Colorado State University, Fort Collins, CO.
24.
Beeby
,
S.
, and
White
,
N. M.
,
2010
,
Energy Harvesting for Autonomous Systems
,
Artech House
, Boston, MA.
25.
Candadai
,
A. A.
,
Kumar
,
V. P.
, and
Barshilia
,
H. C.
,
2016
, “
Performance Evaluation of a Natural Convective-Cooled Concentration Solar Thermoelectric Generator Coupled With a Spectrally Selective High Temperature Absorber Coating
,”
Sol. Energy Mater. Sol. Cells
,
145
(Pt. 3), pp.
333
341
.
26.
Miljkovic
,
N.
, and
Wang
,
E. N.
,
2011
, “
Modeling and Optimization of Hybrid Solar Thermoelectric Systems With Thermosyphons
,”
Sol. Energy
,
85
(
11
), pp.
2843
2855
.
27.
Xiao
,
J.
,
Yang
,
T.
,
Li
,
P.
,
Zhai
,
P.
, and
Zhang
,
Q.
,
2012
, “
Thermal Design and Management for Performance Optimization of Solar Thermoelectric Generator
,”
Appl. Energy
,
93
, pp.
33
38
.
28.
Shanmugam
,
S.
,
Eswaramoorthy
,
M.
, and
Veerappan
,
A. R.
,
2014
, “
Modeling and Analysis of a Solar Parabolic Dish Thermoelectric Generator
,”
Energy Sources, Part A: Recovery, Util., Environ. Eff.
,
36
(
14
), pp.
1531
1539
.
29.
Chen
,
W. H.
,
Wang
,
C. C.
,
Hung
,
C. I.
,
Yang
,
C. C.
, and
Juang
,
R. C.
,
2014
, “
Modeling and Simulation for the Design of Thermal-Concentrated Solar Thermoelectric Generator
,”
Energy
,
64
, pp.
287
297
.
30.
Jang
,
J. S. R.
,
1993
, “
ANFIS Adaptive-Network-Based Fuzzy Inference Systems
,”
Man Cybern.
,
23
(
3
), pp.
665
685
.
You do not currently have access to this content.