In this paper, the performance analysis of a floriculture greenhouse having a fan-pad ventilation system is presented. The greenhouse is powered by integrated solar photovoltaic–electrolyser–fuel cell system. Electrical energy is generated in an array of roof mounted solar photovoltaic modules and energy back up is provided through a combination of polymer electrolyte membrane (PEM) electrolyser and fuel cell system. Excess energy, after meeting the requirements of greenhouse during peak sunshine hours, is supplied to an electrolyser bank to generate hydrogen gas, which is consumed by PEM fuel cell stacks to support the power requirement during the energy deficit hours. The performance of greenhouse and its power system are analyzed for representative days of different seasons of a climatic cycle. The study shows that temperature inside the greenhouse can be maintained within permissible limits for cultivation of target flowers like varieties of rose using fan-pad ventilation. From the performance analysis of power system, it is observed that there is net accumulation of hydrogen gas for representative days of all seasons of a climatic cycle, the daylong cumulative gas generation being maximum in the month of December. The study reinforces the viability of a standalone, grid-independent greenhouse powered through solar energy.

References

1.
Moharil
,
R. M.
, and
Kulkarni
,
P. S.
, 2009, “
A Case Study of Solar Photovoltaic Power System at Sagardeep Island, India
,”
Renewable Sustainable Energy Rev.
13
(
3
), pp.
673
681
.
2.
Ro
,
K.
, and
Rahman
,
S.
, 1998, “
Battery or Fuel Cell Support for an Autonomous Photovoltaic Power System
,”
Renewable Energy
,
13
(
2
), pp.
203
213
.
3.
Nayak
,
S.
, and
Tiwari
,
G. N.
, 2009, “
Theoretical Performance Assessment of an Integrated Photovoltaic and Earth Air Heat Exchanger Greenhouse Using Energy and Exergy Analysis Methods
,”
Energy Build.
41
(
8
), pp.
888
896
.
4.
Janjai
,
S.
,
Lamlert
,
N.
,
Intawee
,
P.
,
Mahayothee
,
B.
,
Bala
,
B. K.
,
Nagle
,
M.
, and
Muller
,
J.
, 2009, “
Experimental and Simulated Performance of A PV-Ventilated Solar Greenhouse Dryer for Drying of Peeled Longan and Banana
,”
Sol. Energy
,
83
(
9
), pp.
1550
1565
.
5.
Janjai
,
S.
,
Khamvongsa
,
V.
, and
Bala
,
B. K.
, 2007, “
Development, Design and Performance of a PV-Ventilated Greenhouse Dryer
,”
Int. Energy J.
,
8
, pp.
249
258
.
6.
Barnwal
,
P.
, and
Tiwari
,
G. N.
, 2008, “
Grape Drying by Using Hybrid Photovoltaic-Thermal (PV/T) Greenhouse Dryer: An Experimental Study
,”
Sol. Energy
,
82
(
12
), pp.
1131
1144
.
7.
Yano
,
A.
,
Tsuchiya
,
K.
,
Nishi
,
K.
,
Moriyama
,
T.
, and
Ide
,
O.
, 2007, “
Development of a Greenhouse Side-Ventilation Controller Driven by Photovoltaic Energy
,”
Biosyst. Eng.
96
(
4
), pp.
633
641
.
8.
Yano
,
A.
,
Furue
,
A.
,
Moriyama
,
T.
,
Ide
,
O.
, and
Tsuchiya
,
K.
, 2007, “
Development of a Greenhouse Shading Screen Controller Driven by Photovoltaic Energy
,”
J. Jpn. Soc. Agric. Mach.
69
, pp.
57
64
.
9.
Ghosh
,
S.
,
Ganguly
,
A.
, and
Dattagupta
,
K. K.
, 2005, “
Concept and Design of a Solar Powered Floriculture Greenhouse With Fuel Cell Back up
,”
Proceedings of International Conference on Mechanical Engineering
, TH-30, pp.
1
5
.
10.
Yano
,
A.
,
Furue
,
A.
,
Kadowaki
,
M.
,
Tanaka
,
T.
,
Hiraki
,
E.
,
Miyamoto
,
M.
,
Ishizu
,
F.
, and
Noda
,
S.
, 2009, “
Electrical Energy Generated by Photovoltaic Modules Mounted Inside the Roof of a North-South Oriented Greenhouse
,”
Biosyst. Eng.
103
(
2
), pp.
228
238
.
11.
Yano
,
A.
,
Kadowaki
,
M.
,
Furue
,
A.
,
Tamaki
,
N.
,
Tanaka
,
T.
,
Hiraki
,
E.
,
Kato
,
Y.
,
Ishizu
,
F.
, and
Noda
,
S.
, 2010, “
Shading and Electrical Features of a Photovoltaic Array Mounted Inside the Roof of an East-West Oriented Greenhouse
,”
Biosyst. Eng.
106
(
2
), pp.
367
377
.
12.
Tiwari
,
G. N.
, 2003,
Greenhouse Technology for Controlled Environment
,
Narosa Publishing House
,
New Delhi
.
13.
Zieslin
,
N.
, and
Mor
,
Y.
, 1990, “
Light on Roses. A review
,”
Sci. Horticulturae
,
43
, pp.
1
14
.
14.
Ganguly
,
A.
, and
Ghosh
,
S.
, 2007, “
Modeling and Analysis of a Fan Pad Ventilated Greenhouse
,”
Energy Build.
39
(
10
), pp.
1092
1097
.
15.
Ganguly
,
A.
, and
Ghosh
,
S.
, 2009, “
Model Development and Experimental Validation of a Floriculture Greenhouse Under Natural Ventilation
,”
Energy Build.
41
(
5
), pp.
521
527
.
16.
Planning & Maintenance Guidelines for SPV Power Supply, Power Plant Issue-1
, No. GL/SPV-05/01, Telecommunication Engineering Centre (TEC), New Delhi, April 2004 (http://www.tec.gov.in/guidelines.htmlhttp://www.tec.gov.in/guidelines.html, accessed online on March 23, 2010).
17.
Patra
,
S. K.
, and
Datta
,
P P.
,
, 2003, “
Some Insights Into Solar Photovoltaics-Solar Home Lighting System
,” NABARD Technical Digest 7 (http://www.nabard.org/http://www.nabard.org/, accessed online on March 23, 2010).
18.
Chenni
,
R.
,
Makhlouf
,
M.
,
Kerbache
,
T.
, and
Bouzid
,
A.
, 2007, “
A Detailed Modeling Method for Photovoltaic Cells
,”
Energy
,
32
(
9
), pp.
1724
1730
.
19.
Paul
,
B.
, and
Andrews
,
J.
, 2008, “
Optimal Coupling of PV Arrays to PEM Electrolyzers in Solar-Hydrogen Systems for Remote Area Power Supply
,”
Int. J. Hydrogen Energy
,
33
(
2
), pp.
490
498
.
20.
Specifications of PM-75 Module, Central Electronics Ltd. (India) (http://www.celsolar.comhttp://www.celsolar.com, accessed online on March 23, 2010).
21.
Mani
,
A.
, 1980,
Handbook of Solar Radiation Data
,
Allied Publisher Private Limited
,
New Delhi
.
You do not currently have access to this content.