The High Temperature Receiver (HitTRec) consists of a modular ceramic absorber, a supporting structure and an air-return system. It has been designed to prevent possible flow instability at 700-800°C average outlet air temperature with atmospheric pressure. The HiTRec-II prototype was developed to solve the structural problems of the first prototype (HiTRec-I). Testing in the Plataforma Solar de Almerı´a (PSA) test bed lasted from November 2000 through May 2001, accumulating 150 test hours under concentrated sun. Results demonstrated the durability of the modified stainless-steel structure. Inlet aperture flux was up to 900kW/m2 and average outlet air temperatures of up to 840°C with peak outlet air temperatures of up to 950°C. Thermal efficiency under steady-state conditions was 76±7% at 700°C, nominal conditions for a PHOEBUS-type volumetric receiver. Other performance characteristics were also evaluated (e.g., Air Return Ratio of 46% and characteristic receiver response time of 70 s).

1.
Sanders Associates Inc., 1979, “1/4-Megawatt Solar Receiver.” Final Report. DOE/SF/90506-1, Oct.
2.
Fricker, H. W., Winkler, C., Silva, M., and Chavez, J., 1990, “Design and Test Results of the Wire Receiver Experiment Almeria,” Solar Thermal Technology-Research Development and Applications, Proc. of 4 Int. Symp., Hemisphere Publishing Corp., New York, pp. 265–277.
3.
Kribus
,
A.
,
Doron
,
P.
,
Rubin
,
R.
,
Reuven
,
R.
,
Taragan
,
E.
,
Duchan
,
S.
, and
Karni
,
J.
,
2001
, “
Performance of the Directly-Irradiated Annular Pressurized Receiver (DIAPR) Operating at 20 bar and 1200°C,
ASME J. Sol. Energy Eng.
,
123
(
1
), pp.
10
17
.
4.
Pylkka¨nen, T., and Posnasky, M., 1994, “High Temperature Volumetric Gas Receiver: The Atlantis Ceramic Grid Receiver,” Proc. of 1994 ASME Joint Solar Engineering Conf., pp. 567–572.
5.
Schmitz-Goeb, M., and Keintzel, G., 1997, “The PHOEBUS SOLAR Power Tower.” Solar Engineering, ASME, pp. 47–53.
6.
Haeger, M., Keller, L., Monterreal, R., and Valverde, A., 1994, “PHOEBUS Technology Program Solar Air Receiver (TSA): Experimental Set Up for TSA at the CESA Test Facility of the Plataforma Solar de Almerı´a (PSA),” Proc. of the 1994 ASME/JSME/JSES Int. Solar Engineering Conf., pp. 643–650.
7.
Chavez, J. M., Lessley, R. L., and Leon, J., 1994, “Design, Fabrication and Testing of a 250kWt Knit-Wire Mesh Volumetric Air Receiver.” Proc. of 1994 ASME/JSME/JSES International Solar Engineering Conf., pp. 605–610.
8.
Hellmuth, T. E., Matthews, L. K., Chavez, J. M., and Hale, C. A., 1994, “Performance of a Wire Mesh Solar Volumetric Air Receiver,” Proc. of 1994 ASME/JSME/JSES International Solar Engineering Conf., pp. 573–578.
9.
Pitz-Paal, R., 1996, “Evaluation of the CATREC II Receiver Test,” IEA Solar PACES Technical Report, No. III-2/96.
10.
Te´llez F. M., Marcos M. J., and Romero M., 2001, “Design of ‘Sirec-1’ Wire Mesh Open Volumetric Solar Receiver Prototype,” Proc. of 2001 ASME Int. Solar Energy Conf.
11.
Buck, R., Pfa¨nder, M., Schwarzbo¨zl, P., and Te´llez, F., 2001, “Solar-Hybrid Gas Turbine-Based Power Tower Systems (REFOS).” Proc. of 2001 ASME International Solar Energy Conf.
12.
Buck, R., Heller, P., and Koch, H., 1996, “Receiver Development for a Dish-Brayton System,” Proc. of ASME Solar Engineering 1996, Solar Energy Conf., pp. 91–96.
13.
Buck
,
R.
,
Abele
,
M.
, et al.
,
1994
, “
Development of a Volumetric Receiver-Reactor for Solar Methane Reforming
,”
ASME J. Sol. Energy Eng.
,
116
, p.
449
449
.
14.
Tamme
,
R.
,
Buck
,
R.
,
Epstein
,
M.
,
Fisher
,
U.
, and
Sugarmen
,
C.
,
2001
, “
Solar Upgrading of Fuels for Generation of Electricity,”
ASME J. Sol. Energy Eng.
,
123
, pp.
160
163
.
15.
Carotenuto
,
A.
,
Reale
,
F.
,
Ruocco
,
G.
,
Nocera
,
U.
, and
Bonomo
,
F.
,
1993
, “
Thermal Behavior of a Multi-Cavity Volumetric Solar Receiver: Design and Test Results.
Sol. Energy
,
50
(
2
), pp.
113
121
.
16.
Hoffschmidt, B., Pitz-Paal, R., Bo¨hmer, M., Fend, T., and Rietbrock, P., 1999, “200kWth Open Volumetric Air Receiver (HlTRec) of DLR reached 1000°C Average Outlet Temperature at PSA,” Journa de Physique IV, 9, Proc. of 9th Int. Symp. on Solar Thermal Concentrating Technologies, pp. 551–556.
17.
Hoffschmidt, B., Ferna´ndez, V., Konstandopoulos, A. G., Mavroidis, I., Romero, M., Stobbe, P., and Te´llez, F., 2001, “Development of Ceramic Volumetric Receiver Technology,” 5th Cologne Solar Symp., 21.06.200.
18.
Kribus
,
A.
,
Ries
,
H.
, and
Spirkl
,
W.
,
1996
, “
Inherent Limitations of Volumetric Solar Receivers
,”
ASME J. Sol. Energy Eng.
,
118
, pp.
151
155
.
19.
Buck, R., 2000, “Massenstrom-Instabllitaten bei volumetrischen Receiver-Reaktoren,” VDI, Fortschritt-Berichte, Reihe 3, Nr. 648, Duesseldorf.
20.
Pitz-Paal
,
R.
,
Hoffschmidt
,
B.
,
Bo¨hmer
,
M.
, and
Becker
,
M.
,
1996
, “
Experimental and Numerical Evaluation of the Performance and Flow Stability of Different Types of Open Volumetric Absorbers Under Non-Homogeneous Irradiation
,”
Sol. Energy
,
60
(
3/4
), pp.
135
159
.
21.
Casals, X. G., and Ajona, J. I., 1999, “The Duct Selective Volumetric Receiver: Potential for Different Selectivity Strategies and Stability Issues,” 1999 ISES Solar World Congress, pp. 1409–1417.
22.
Ballestrı´n, J., 2001, “Direct Heat-Flux Measurement System (MDF) for Solar Central Receiver Evaluation,” Ciemat’ Tech. Report, ISSN: 1135-9420. Ed. Ciemat, April, 2001.
23.
Kro¨ger-Vodde, A., and Holla¨nder, A., 1998, “CCD Flux Measurement System PROHERMES,” 9th SolarPACES Int. Symp. on Solar Thermal Concentrating Technologies Font-Romeu (France), June 22–26, France and Journal de Physique IV (Proceedings) 9, Pr 3, March 1999, Pr3-649.
24.
Becker, M., Cordes, S., and Bo¨hmer, M., 1992, “The Development of Open Volumetric Receivers,” Proc. of 6th Int. Symp. on Solar Thermal Concentrating Technologies, Sept. 1992, pp. 945–952.
25.
Matlab, 2000, “The Language of Technical Computing,” Release 12, MathWorks, Inc., Natik, MA.
26.
Box, G. E. P., and Jenkins, G. M., 1976, Time Series Analysis, Forecasting and Control, Holden-Day Inc., California, Chap. 10 (Transfer function models).
You do not currently have access to this content.