The photocatalytic activity of a novel anatase titanium dioxide powder, namely Sachtleben Hombikat UV 100, has been investigated and compared with that of a well-studied material (i.e., Degussa P25). Laboratory experiments using dichloroacetate (DCA) as the model pollutant have been carried out showing a very high photonic efficiency (ζ) reaching almost unity at low-light intensities. The effect of pH, substrate concentration, catalyst concentration, and addition of various inorganic salts has been thoroughly investigated. The inhibiting effect of anions such as chloride, nitrate, sulphate, and phosphate was completely reversible upon washing the catalyst powder with pure water or diluted base, respectively. The overall photonic efficiency of the DCA degradation was found to decrease with increasing illumination intensity. Various kinetic and mechanistic models are proposed to explain this effect as well as the results of the other experiments. Implications of these laboratory results for “real world” applications, e.g., for the design of appropriate photoreactors, are discussed.

1.
Bahnemann
D. W.
,
Bockelmann
D.
, and
Goslich
R.
,
1991
, “
Mechanistic studies of water detoxification in illuminated TiO2 suspensions
,”
Solar Energy Materials
, Vol.
24
, pp.
564
583
.
2.
Bahnemann, D. W., Bockelmann, D., Goslich, R., Hilgendorff, M., and Weichgrebe, D., 1993, “Photocatalytic detoxification: Novel catalysts, mechanisms and solar applications,” Trace Metals in the Environment 3: Photocatalytic Purification and Treatment of Water and Air, D. F. Ollis, and H. Al-Ekabi, eds., Elsevier, Amsterdam, pp.771–776.
3.
Bockelmann, D., 1989, “Photokatalytischer Abbau Halogenierter Kohlenwasserstoffe an Halbleiteroberfla¨chen,” Diplomarbeit, TU Clausthal.
4.
Carey
J. H.
,
Lawrence
J.
, and
Tosine
H. M.
,
1976
, “
Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions
,”
Bulletin of the Environmental Contamination Toxicology
, Vol.
16
, pp.
697
701
.
5.
Dieter
H. H.
,
1989
, “
Gebtdem Grenzwert eine Chance! Pestizide im Trinkwasser
,”
Wechselwirkung
, Vol.
43
, pp.
4
9
.
6.
Fettwell, J., 1989, “Semiconductors help the sun to clean water,” New Scientist, June 10, p. 36.
7.
Gerisctier
H.
,
1979
, “
Solar photoelectrolysis with semiconductor electrodes
,”
Topics in Applied Physics
, Vol.
31
, pp.
115
171
.
8.
Ha¨fner
M.
,
1989
, “
Wasser ist kein Naturprodukt mehr
,”
Nalur
, Vol.
10
, pp.
20
23
.
9.
Hecht, J., 1990, “Sunlight gives toxic waste a tanning,” New Scientist, Apr.14, p. 28.
10.
Heller, H. G., and Langan, J. R., 1981, “A new reusable chemical actinometer,” EPA Newsletters, pp. 71–73.
11.
Hilgendorff, M., 1991, “Mechanistische Untersuchungen zum Photokatalytischen Abbau von Dichloressigsa¨ure,” Diplomarbeit, Universita¨t Hannover.
12.
Hilgendorff, M., and Bahnemann, D. W., 1996, “Adsorption of dichloroacetate on TiO2-particles in aqueous solution: An in situ attenuated total reflection fourier transform infrared study,” Langrnuir, manuscript in preparation.
13.
Hoffmann
M. R.
,
Martin
S. T.
,
Choi
W.
, and
Hahnemann
D. W.
, “
Environmental Applications of Semiconductor Photocatalysis
,”
Chemical Reviews
, Vol.
95
, pp.
69
96
.
14.
Kormann
C.
,
Hahnemann
D. W.
, and
Hoffmann
M. R.
,
1988
, “
Preparation and characterization of quantum size titanium dioxide (TiO2)
,”
Journal of Physical Chemistry
, Vol.
92
, pp.
5196
5201
.
15.
Kormann, C., 1989, “Synthesis and Characterization of Quantum Size Metal Oxide Colloidal Particles. Photocatalytic Peroxide Formation on ZnO and TiO2,” Ph.D. Thesis, California Institute of Technology, Pasadena, CA.
16.
Kormann
C.
,
Hahnemann
D. W.
, and
Hoffmann
M. R.
,
1991
, “
Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions
,”
Environmental Science & Technology
, Vol.
25
, pp.
494
500
.
17.
OIlis
D. F.
,
Hsiao
C.-Y.
,
Budiman
L.
, and
Lee
C.-L.
,
1984
, “
Heterogeneous photoassisted catalysis: Conversions of perchloroethylene, dichloroethane, chloroacetic acids, and chlorobenzenes
,”
Journal of Catalysis
, Vol.
88
, pp.
89
96
.
18.
Ollis, D. F., 1991, “Solar-assisted photocatalysis for water purification: issues, data, questions,” Photochemical Conversion and Storage of Solar Energy. E. Pelizzetti and M. Schiavello, eds., Kluwer, Dordrecht, pp. 593–622.
19.
Pelizzetti
E.
,
Minero
C.
, and
Maurino
C.
,
1990
, “
The role of colloidal particles in the photodegradation of organic compounds of environmental concern inaquatic systems
,”
Advances in Colloidal Interface Science
, Vol.
32
, pp.
271
316
.
20.
Robin, E., 1989, “Sunlight found to help break down organic pollutants,” San Francisco Examiner, May 20, p. D–3.
21.
Serpone, N., and Pelizzetti, E., 1989, Photocatalysis: Fundamentals and Applications, J Wiley and Sons, New York.
22.
Serpone
N.
,
Terzian
R.
,
Lawless
D.
,
Kennepohl
P.
, and
Sauve´
G.
,
1993
, “
On the usage of turnover numbers and quantum yields in heterogeneous photocatalysis
,”
J. Photochem, Photobiol. A: Chem.
, Vol.
73
, pp.
11
16
.
23.
Stumm, W., and Morgan, J. J., 1981, Aquatic Chemistry, Wiley-Interscience, New York.
24.
Thornton, J., 1989, “Sunlight destroys hazardous waste,” SERI S&T In Review, p. 8.
25.
Weiss
J.
,
1983
, “
Einfu¨hrung in die Ionenchromatographie: Grundlagen, Instrumentation und Anwendung, Teil 1
,”
Chemie in Labor und Betrieb
, Vol.
34
, pp.
293
297
.
This content is only available via PDF.
You do not currently have access to this content.