Abstract

A novel method is proposed in this work for the classification of fault in the ball bearings. Applications of K-nearest neighbor (KNN) techniques are increasing, which redefines the state-of-the-art technology for defect diagnosis and classification. Vibration characteristics of deep groove ball bearing with different defects are studied in this paper. Experimentation is conducted at different loads and speeds with artificially created defects, and vibration data are processed using kurtosis to find frequency band of interest and amplitude demodulation (Envelope spectrum analysis). Bearing fault amplitudes are extracted from the filtered signal spectrum at bearing characteristic frequency. The decision of fault classification is made using a KNN machine learning classifier by training feature data. The training features are created using characteristics amplitude at different fault and bearing conditions. The results showed that the KNN's accuracies are 100% and 97.3% when applied to two different experimental databases. The quantitative results of the KNN classifier are applied as the guidance for investigating the type of defects of bearing. The KNN Classifier method proved to be an effective method to quantify defects and significantly improve classification efficiency.

References

1.
Pan
,
H.
,
Yang
,
Y.
,
Zheng
,
J.
,
Li
,
X.
, and
Cheng
,
J.
,
2019
, “
A Fault Diagnosis Approach for Roller Bearing Based on Symplectic Geometry Matrix Machine
,”
Mech. Mach. Theory
,
140
, pp.
31
43
.10.1016/j.mechmachtheory.2019.05.019
2.
Desavale
,
R. G.
, and
Salunkhe
,
V. G.
,
2016
, “
Damage Detection of Roller Bearing System Using Experimental Data
,”
Procedia Eng.
,
144
, pp.
202
207
.10.1016/j.proeng.2016.05.025
3.
Zhang
,
X.
,
Yan
,
C.
,
Liu
,
Y.
,
Yan
,
P.
,
Wang
,
Y.
, and
Wu
,
L.
,
2020
, “
Dynamic Modeling and Analysis of Rolling Bearing With Compound Fault on Raceway and Rolling Element
,”
Shock Vib.
,
20
, pp.
1
16
.10.1155/2020/8861899
4.
Kumar
,
A.
,
Zhou
,
Y.
,
Gandhi
,
C. P.
,
Kumar
,
R.
, and
Xiang
,
J.
,
2020
, “
Bearing Defect Size Assessment Using Wavelet Transform Based Deep Convolutional Neural Network (DCNN)
,”
Alexandria Eng. J.
,
59
(
2
), pp.
999
1012
.10.1016/j.aej.2020.03.034
5.
Heng
,
W.
,
Jinhai
,
C.
,
Jiangming
,
Q.
, and
Guangxian
,
N.
,
2020
, “
A New Approach for Safety Life Prediction of Industrial Rolling Bearing Based on State Recognition and Similarity Analysis
,”
Saf. Sci.
,
122
, p.
104530
.10.1016/j.ssci.2019.104530
6.
Liu
,
Y.
,
Zhu
,
Y.
,
Yan
,
K.
,
Wang
,
F.
, and
Hong
,
J.
,
2018
, “
A Novel Method to Model Effects of Natural Defect on Roller Bearing
,”
Tribol. Int.
,
122
, pp.
169
178
.10.1016/j.triboint.2018.02.028
7.
Niu
,
L.
,
Cao
,
H.
,
Hou
,
H.
,
Wu
,
B.
,
Lan
,
Y.
, and
Xiong
,
X.
,
2020
, “
Experimental Observations and Dynamic Modeling of Vibration Characteristics of a Cylindrical Roller Bearing With Roller Defects
,”
Mech. Syst. Signal Process.
,
138
, p.
106553
.10.1016/j.ymssp.2019.106553
8.
Upadhyay
,
R. K.
,
Kumaraswamidhas
,
L. A.
, and
Azam
,
M. S.
,
2013
, “
Rolling Element Bearing Failure Analysis: A Case Study
,”
Case Stud. Eng. Failure Anal.
,
1
(
1
), pp.
15
17
.10.1016/j.csefa.2012.11.003
9.
Peeters
,
C.
,
Guillaume
,
P.
, and
Helsen
,
J.
,
2018
, “
Vibration-Based Bearing Fault Detection for Operations and Maintenance Cost Reduction in Wind Energy
,”
Renewable Energy
,
116
, pp.
74
87
.10.1016/j.renene.2017.01.056
10.
Udmale
,
S. S.
, and
Singh
,
S. K.
,
2020
, “
A Mechanical Data Analysis Using Kurtogram and Extreme Learning Machine
,”
Neural Comput. Appl.
,
32
(
8
), pp.
3789
3801
.10.1007/s00521-019-04398-0
11.
Prasetyo
,
E.
,
Purbaningtyas
,
R.
, and
Adityo
,
R. D.
,
2020
, “
Cosine K-Nearest Neighbor in Milkfish Eye Classification
,”
Int. J. Intell. Eng. Syst.
,
13
(
3
), pp.
11
25
.10.22266/ijies2020.0630.02
12.
Hoang
,
D.
, and
Kang
,
H.
,
2019
, “
Rolling Element Bearing Fault Diagnosis Using Convolutional Neural Network and Vibration Image
,”
Cognitive Syst. Res.
,
53
, pp.
42
50
.10.1016/j.cogsys.2018.03.002
13.
Surajkumar
,
G.
,
Kumbhar
,
E.
, and
Sudhagar
,
P.
,
2020
, “
An Integrated Approach of Adaptive Neuro-Fuzzy Inference System and Dimension Theory for Diagnosis of Rolling Element Bearing
,”
Measurement
,
166
, p.
108266
.10.1016/j.measurement.2020.108266
14.
Patil
,
S. M.
,
Desavale
,
R. G.
, and
Kumbhar
,
S. G.
,
2021
, “
Roller Element Bearing Fault Size Estimation Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
,”
ASME J. Risk Uncertainty Part B
,
7
(
1
), p.
011001
.10.1115/1.4048656
15.
Surajkumar
,
G.
,
Kumbhar
,
E.
, and
Sudhagar
,
P.
,
2021
, “
Fault Diagnostics of Roller Bearings Using Dimension Theory
,”
ASME J. Nondestruct. Eval.
,
4
(
1
), p.
011001
.10.1115/1.4047102
16.
Surajkumar
,
G.
,
Kumbhar
,
E.
,
Sudhagar
,
P.
, and
Desavale
,
R. G.
,
2021
, “
An Overview of Dynamic Modeling of Rolling Element Bearings
,”
SAGE Noise Vib. Worldwide
,
52
(
1–2
), pp.
3
18
.10.1177/0957456520948279
17.
Salunkhe
,
V. G.
, and
Desavale
,
R. G.
,
2021
, “
An Intelligent Prediction for Detecting Bearing Vibration Characteristics Using a Machine Learning Model
,”
ASME J. Nondestruct. Eval.
,
4
(
3
), p.
031004
.10.1115/1.4049938
18.
Kumbhar
,
S. G.
,
Desavale
,
R. G.
, and
Dharwadkar
,
N. V.
,
2021
, “
Fault Size Diagnosis of Rolling Element Bearing Using Artificial Neural Network and Dimension Theory
,”
Neural Comput Appl.
,
33
(
23
), pp.
16079
16093
.10.1007/s00521-021-06228-8
19.
Salunkhe
,
V. G.
,
Desavale
,
R. G.
, and
Jagadeesha
,
T.
,
2021
, “
Experimental Frequency-Domain Vibration Based Fault Diagnosis of Roller Element Bearings Using Support Vector Machine
,”
ASME J. Risk Uncertainty Part B
,
7
(
2
), p.
021001
.10.1115/1.4048770
20.
Desavale
,
R. G.
,
Jadhav
,
P. M.
, and
Dharwadkar
,
N. V.
,
2021
, “
Dynamic Response Analysis of Gearbox to Improve Fault Detection Using Empirical Mode Decomposition and Artificial Neural Network Techniques
,”
ASME J. Risk Uncertainty Part B
,
7
(
3
), p.
031007
.10.1115/1.4051344
21.
Pandya
,
D. H.
,
Upadhyay
,
S. H.
, and
Harsha
,
S. P.
,
2013
, “
Fault Diagnosis of Rolling Element Bearing With Intrinsic Mode Function of Acoustic Emission Data Using APF-KNN
,”
Expert Syst. Appl.
,
40
(
10
), pp.
4137
4145
.10.1016/j.eswa.2013.01.033
22.
Dou
,
D.
, and
Zhou
,
S.
,
2016
, “
Comparison of Four Direct Classification Methods for Intelligent Fault Diagnosis of Rotating Machinery
,”
Appl. Soft Comput.
,
46
, pp.
459
468
.10.1016/j.asoc.2016.05.015
23.
Ahmed
,
H.
, and
Nandi
,
A. K.
,
2018
, “
Compressive Sampling and Feature Ranking Framework for Bearing Fault Classification With Vibration Signals
,”
IEEE Access
,
6
, pp.
44731
44746
.10.1109/ACCESS.2018.2865116
24.
Sharma
,
A.
,
Jigyasu
,
R.
,
Mathew
,
L.
, and
Chatterji
,
S.
,
2018
, “
Bearing Fault Diagnosis Using Weighted K-Nearest Neighbor
,”
Second International Conference on Trends in Electronics and Informatics
(
ICOEI
), Tirunelveli, India, May 11–12, pp.
1132
1137
.10.1109/ICOEI.2018.8553800
25.
Rathore
,
M. S.
, and
Harsha
,
S. P.
,
2022
, “
Prognostic Analysis of High-Speed Cylindrical Roller Bearing Using Weibull Distribution and k-Nearest Neighbor
,”
ASME J. Nondestruct. Eval.
,
5
(
1
), p.
011005
.10.1115/1.4051314
26.
Wang
,
Q.
,
Wang
,
S.
,
Wei
,
B.
,
Chen
,
W.
, and
Zhang
,
Y.
,
2021
, “
Weighted K-NN Classification Method of Bearings Fault Diagnosis With Multi-Dimensional Sensitive Features
,”
IEEE Access
,
9
, pp.
45428
45440
.10.1109/ACCESS.2021.3066489
You do not currently have access to this content.