Abstract

Dry powder inhalers (DPI), used as a means for pulmonary drug delivery, typically contain a combination of active pharmaceutical ingredients (API) and significantly larger carrier particles. The microsized drug particles—which have a strong propensity to aggregate and poor aerosolization performance—are mixed with significantly large carrier particles that cannot penetrate the mouth-throat region to deagglomerate and entrain the smaller API particles in the inhaled airflow. Therefore, a DPI's performance depends on the carrier-API combination particles' entrainment and the time and thoroughness of the individual API particles' deagglomeration from the carrier particles. Since DPI particle transport is significantly affected by particle-particle interactions, particle sizes and shapes present significant challenges to computational fluid dynamics (CFD) modelers to model regional lung deposition from a DPI. We employed the Particle-In-Cell method for studying the transport/deposition and the agglomeration and deagglomeration for DPI carrier and API particles in the present work. The proposed development will leverage CFD-PIC and sensitivity analysis capabilities from the Department of Energy laboratories: Multiphase Flow Interface Flow Exchange and Dakota UQ software. A data-driven framework is used to obtain the reliable low order statics of the particle's residence time in the inhaler. The framework is further used to study the effect of drug particle density, carrier particle density and size, fluidizing agent density and velocity, and some numerical parameters on the particles' residence time in the inhaler.

References

1.
Zhou
,
Q. T.
,
Tang
,
P.
,
Leung
,
S. S. Y.
,
Chan
,
J. G. Y.
, and
Chan
,
H.-K.
,
2014
, “
Emerging Inhalation Aerosol Devices and Strategies: Where Are We Headed?
,”
Adv. Drug Delivery Reviews
,
75
, pp.
3
17
.10.1016/j.addr.2014.03.006
2.
Alderborn
,
G.
, and
Aulton
,
M.
,
2002
,
Pharmaceutics: The Science of Dosage Form Design
,”
Churchill Livingstone, Edinburgh/New York.
3.
Frijlink
,
H. W.
, and
De Boer
,
A. H.
,
2004
, “
Dry Powder Inhalers for Pulmonary Drug Delivery
,”
Expert Opin. Drug Deliv.
,
1
(
1
), pp.
67
86
.10.1517/17425247.1.1.67
4.
Islam
,
N.
, and
Gladki
,
E.
,
2008
, “
Dry Powder Inhalers (DPIs)—a Review of Device Reliability and Innovation
,”
Int. J. Pharm.
,
360
(
1–2
), pp.
1
11
.10.1016/j.ijpharm.2008.04.044
5.
Newman
,
S. P.
, and
Busse
,
W. W.
,
2002
, “
Evolution of Dry Powder Inhaler Design, Formulation, Performance
,”
Resp. Med.
,
96
(
5
), pp.
293
304
.10.1053/rmed.2001.1276
6.
Chan
,
H.-K.
,
2006
, “
Dry Powder Aerosol Delivery Systems: Current and Future Research Directions
,”
J. Aerosol Med.
,
19
(
1
), pp.
21
27
.10.1089/jam.2006.19.21
7.
Chan
,
H.-K.
,
2006
, “
Dry Powder Aerosol Drug Delivery—Opportunities for Colloid and Surface Scientists
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
284–285
, pp.
50
55
.10.1016/j.colsurfa.2005.10.091
8.
Stegemann
,
S.
,
Kopp
,
S.
,
Borchard
,
G.
,
Shah
,
V. P.
,
Senel
,
S.
,
Dubey
,
R.
,
Urbanetz
,
N.
,
Cittero
,
M.
,
Schoubben
,
A.
,
Hippchen
,
C.
,
Cade
,
D.
,
Fuglsang
,
A.
,
Morais
,
J.
,
Borgström
,
L.
,
Farshi
,
F.
,
Seyfang
,
K.-H.
,
Hermann
,
R.
,
van de Putte
,
A.
,
Klebovich
,
I.
, and
Hincal
,
A.
,
2013
, “
Developing and Advancing Dry Powder Inhalation Towards Enhanced Therapeutics
,”
Eur. J. Pharm. Sci.
,
48
(
1–2
), pp.
181
194
.10.1016/j.ejps.2012.10.021
9.
De Boer
,
A. H.
,
Chan
,
H. K.
, and
Price
,
R.
,
2012
, “
A Critical View on Lactose-Based Drug Formulation and Device Studies for Dry Powder Inhalation: Which Are Relevant and What Interactions to Expect?
,”
Adv. Drug Deliv. Rev.
,
64
(
3
), pp.
257
274
.10.1016/j.addr.2011.04.004
10.
Zhou
,
Q. T.
, and
Morton
,
D. A.
,
2012
, “
Drug–Lactose Binding Aspects in Adhesive Mixtures: Controlling Performance in Dry Powder Inhaler Formulations by Altering Lactose Carrier Surfaces
,”
Adv. Drug Deliv. Rev.
,
64
(
3
), pp.
275
284
.10.1016/j.addr.2011.07.002
11.
Begat
,
P.
,
Morton
,
D. A.
,
Staniforth
,
J. N.
, and
Price
,
R.
,
2004
, “
The Cohesive-Adhesive Balances in Dry Powder Inhaler Formulations I: Direct Quantification by Atomic Force Microscopy
,”
Pharm. Res.
,
21
(
9
), pp.
1591
1597
.10.1023/B:PHAM.0000041453.24419.8a
12.
Begat
,
P.
,
Morton
,
D. A.
,
Staniforth
,
J. N.
, and
Price
,
R.
,
2004
, “
The Cohesive-Adhesive Balances in Dry Powder Inhaler Formulations II: Influence on Fine Particle Delivery Characteristics
,”
Pharm. Res.
,
21
(
10
), pp.
1826
1833
.10.1023/B:PHAM.0000045236.60029.cb
13.
Kaialy
,
W.
,
Alhalaweh
,
A.
,
Velaga
,
S. P.
, and
Nokhodchi
,
A.
,
2011
, “
Effect of Carrier Particle Shape on Dry Powder Inhaler Performance
,”
Int. J. Pharm.
,
421
(
1
), pp.
12
23
.10.1016/j.ijpharm.2011.09.010
14.
Guenette
,
E.
,
Barrett
,
A.
,
Kraus
,
D.
,
Brody
,
R.
,
Harding
,
L.
, and
Magee
,
G.
,
2009
, “
Understanding the Effect of Lactose Particle Size on the Properties of DPI Formulations Using Experimental Design
,”
Int. J. Pharm.
,
380
(
1–2
), pp.
80
88
.10.1016/j.ijpharm.2009.07.002
15.
Zanen
,
P.
,
Go
,
L. T.
, and
Lammers
,
J.-W. J.
,
1994
, “
The Optimal Particle Size for β-Adrenergic Aerosols in Mild Asthmatics
,”
Int. J. Pharm.
,
107
(
3
), pp.
211
217
.10.1016/0378-5173(94)90436-7
16.
Donovan
,
M. J.
,
Kim
,
S. H.
,
Raman
,
V.
, and
Smyth
,
H. D.
,
2012
, “
Dry Powder Inhaler Device Influence on Carrier Particle Performance
,”
J. Pharm. Sci.
,
101
(
3
), pp.
1097
1107
.10.1002/jps.22824
17.
Young
,
P. M.
,
Edge
,
S.
,
Traini
,
D.
,
Jones
,
M. D.
,
Price
,
R.
,
El-Sabawi
,
D.
,
Urry
,
C.
, and
Smith
,
C.
,
2005
, “
The Influence of Dose on the Performance of Dry Powder Inhalation Systems
,”
Int. J. Pharm.
,
296
(
1–2
), pp.
26
33
.10.1016/j.ijpharm.2005.02.004
18.
Kaialy
,
W.
,
Ticehurst
,
M.
, and
Nokhodchi
,
A.
,
2012
, “
Dry Powder Inhalers: Mechanistic Evaluation of Lactose Formulations Containing Salbutamol Sulphate
,”
Int. J. Pharm.
,
423
(
2
), pp.
184
194
.10.1016/j.ijpharm.2011.12.018
19.
Kaialy
,
W.
, and
Nokhodchi
,
A.
,
2012
, “
Antisolvent Crystallisation is a Potential Technique to Prepare Engineered Lactose With Promising Aerosolisation Properties: Effect of Saturation Degree
,”
Int. J. Pharm.
,
437
(
1–2
), pp.
57
69
.10.1016/j.ijpharm.2012.07.064
20.
Cline
,
D.
, and
Dalby
,
R.
,
2002
, “
Predicting the Quality of Powders for Inhalation From Surface Energy and Area
,”
Pharm. Res.
,
19
(
9
), pp.
1274
1277
.10.1023/A:1020338405947
21.
Steckel
,
H.
, and
Bolzen
,
N.
,
2004
, “
Alternative Sugars as Potential Carriers for Dry Powder Inhalations
,”
Int. J. Pharm.
,
270
(
1–2
), pp.
297
306
.10.1016/j.ijpharm.2003.10.039
22.
Jashnani
,
R. N.
,
Byron
,
P. R.
, and
Dalby
,
R. N.
,
1995
, “
Testing of Dry Powder Aerosol Formulations in Different Environmental Conditions
,”
Int. J. Pharm.
,
113
(
1
), pp.
123
130
.10.1016/0378-5173(94)00197-D
23.
Shur
,
J.
,
Kubavat
,
H. A.
,
Ruecroft
,
G.
,
Hipkiss
,
D.
, and
Price
,
R.
,
2012
, “
Influence of Crystal Form of Ipratropium Bromide on Micronisation and Aerosolisation Behaviour in Dry Powder Inhaler Formulations
,”
J. Pharmacy Pharmacol.
,
64
(
9
), pp.
1326
1336
.10.1111/j.2042-7158.2012.01522.x
24.
Adi
,
H.
,
Kwok
,
P. C. L.
,
Crapper
,
J.
,
Young
,
P. M.
,
Traini
,
D.
, and
Chan
,
H.-K.
,
2010
, “
Does Electrostatic Charge Affect Powder Aerosolisation?
,”
J. Pharm. Sci.
,
99
(
5
), pp.
2455
2461
.10.1002/jps.21996
25.
Rabbani
,
N. R.
, and
Seville
,
P. C.
,
2005
, “
The Influence of Formulation Components on the Aerosolisation Properties of Spray-Dried Powders
,”
J. Controlled Release
,
110
(
1
), pp.
130
140
.10.1016/j.jconrel.2005.09.004
26.
Kaialy
,
W.
, and
Nokhodchi
,
A.
,
2013
, “
Engineered Mannitol Ternary Additives Improve Dispersion of Lactose–Salbutamol Sulphate Dry Powder Inhalations
,”
AAPS J.
,
15
(
3
), pp.
728
743
.10.1208/s12248-013-9476-4
27.
Kaialy
,
W.
,
Hussain
,
T.
,
Alhalaweh
,
A.
, and
Nokhodchi
,
A.
,
2014
, “
Towards a More Desirable Dry Powder Inhaler Formulation: Large Spray-Dried Mannitol Microspheres Outperform Small Microspheres
,”
Pharm. Res.
,
31
(
1
), pp.
60
76
.10.1007/s11095-013-1132-2
28.
Ruzycki
,
C. A.
,
Javaheri
,
E.
, and
Finlay
,
W. H.
,
2013
, “
The Use of Computational Fluid Dynamics in Inhaler Design
,”
Expert Opin. Drug Deliv.
,
10
(
3
), pp.
307
323
.10.1517/17425247.2013.753053
29.
Jiang
,
L.
,
Tang
,
Y.
,
Zhang
,
H.
,
Lu
,
X.
,
Chen
,
X.
, and
Zhu
,
J.
,
2012
, “
Importance of Powder Residence Time for the Aerosol Delivery Performance of a Commercial Dry Powder Inhaler Aerolizer®
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
25
(
5
), pp.
265
279
.10.1089/jamp.2011.0908
30.
Wong
,
W.
,
Fletcher
,
D. F.
,
Traini
,
D.
,
Chan
,
H. K.
, and
Young
,
P. M.
,
2012
, “
The Use of Computational Approaches in Inhaler Development
,”
Adv. Drug Deliv. Rev.
,
64
(
4
), pp.
312
322
.10.1016/j.addr.2011.10.004
31.
Kafui
,
K. D.
,
Thornton
,
C.
, and
Adams
,
M. J.
,
2002
, “
Discrete Particle-Continuum Fluid Modelling of Gas–Solid Fluidised Beds
,”
Chem. Eng. Sci.
,
57
(
13
), pp.
2395
2410
.10.1016/S0009-2509(02)00140-9
32.
Xu
,
B. H.
, and
Yu
,
A. B.
,
1997
, “
Numerical Simulation of the Gas-Solid Flow in a Fluidized Bed by Combining Discrete Particle Method With Computational Fluid Dynamics
,”
Chem. Eng. Sci.
,
52
(
16
), pp.
2785
2809
.10.1016/S0009-2509(97)00081-X
33.
Pei
,
C.
,
Wu
,
C.-Y.
,
Adams
,
M.
,
England
,
D.
,
Byard
,
S.
, and
Berchtold
,
H.
,
2015
, “
Contact Electrification and Charge Distribution on Elongated Particles in a Vibrating Container
,”
Chem. Eng. Sci.
,
125
, pp.
238
247
.10.1016/j.ces.2014.03.014
34.
Andrews
,
M. J.
, and
O'Rourke
,
P. J.
,
1996
, “
The Multiphase Particle-in-Cell (MP-PIC) Method for Dense Particulate Flows
,”
Int. J. Multiphase Flow
,
22
(
2
), pp.
379
402
.10.1016/0301-9322(95)00072-0
35.
Syamlal
,
M.
,
Rogers
,
W.
, and
O'Brien
,
T. J.
,
1993
, “
MFIX Documentation: Theory Guide
,” National Energy Technology Laboratory, Department of Energy, Morgantown, WV, Report No. DOE/METC-95/1013 and NTIS/DE95000031.
36.
Syamlal
,
M.
,
1998
, “
MFIX Documentation: Numerical Technique
,” National Energy Technology Laboratory, Department of Energy, Morgantown, WV., Report No. DOE/MC31346-5824.
37.
Clarke
,
M. A.
, and
Musser
,
J. M.
,
2020
,
The MFiX Particle-in-Cell Method (MFiX-PIC) Theory Guide
, Department of Energy, Morgantown, WV, Report No. DOE/NETL-2020/2115.
38.
Adams
,
B. M.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Eddy
,
J. P.
,
Eldred
,
M. S.
,
Gay
,
D. M.
,
Haskell
,
K.
,
Hough
,
P. D.
, and
Swiler
,
L. P.
,
2009
, “
DAKOTA, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.0 User's Manual
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2010-2183.
39.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
,
Ghemawat
,
S.
,
Goodfellow
,
I.
,
Harp
,
A.
,
Irving
,
G.
,
Isard
,
M.
,
Jia
,
Y.
,
Jozefowicz
,
R.
,
Kaiser
,
L.
,
Kudlur
,
M.
,
Levenberg
,
J.
,
Mane
,
D.
,
Monga
,
R.
,
Moore
,
S.
,
Murray
,
D.
,
Olah
,
C.
,
Schuster
,
M.
,
Shlens
,
J.
,
Steiner
,
B.
,
Sutskever
,
I.
,
Talwar
,
K.
,
Tucker
,
P.
,
Vanhoucke
,
V.
,
Vasudevan
,
V.
,
Viegas
,
F.
,
Vinyals
,
O.
,
Warden
,
P.
,
Wattenberg
,
M.
,
Wicke
,
M.
,
Yu
,
Y.
, and
Zheng
,
X.
,
2016
, “
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
,” arXiv:1603.04467.
40.
Kotteda
,
V. M. K.
,
Stephens
,
J. A.
,
Spotz
,
W.
,
Kumar
,
V.
, and
Kommu
,
A.
,
2019
, “
Uncertainty Quantification of Fluidized Beds Using a Data-Driven Framework
,”
Powder Technol.
,
354
, pp.
709
718
.10.1016/j.powtec.2019.06.021
41.
Badhan
,
A.
,
Kotteda
,
V. M. K.
, and
Kumar
,
V.
,
2019
, “
CFD DEM Analysis of a Dry Powder Inhaler
,”
AJKFluids2019, Volume 2: Computational Fluid Dynamics
, San Francisco, CA, July 28–Aug. 1.
42.
Kotteda
,
V. M. K.
,
Badhan
,
A.
, and
Kumar
,
V.
,
2020
, “
Parametric Optimization of a Dry Powder Inhaler
,”
FEDSM2020, Volume 3, Computational Fluid Dynamics; Micro and Nano Fluid Dynamics
, July 13–15.
43.
Lathouwers
,
D.
, and
Bellan
,
J.
,
2001
, “
Modeling of Dense Gas–Solid Reactive Mixtures Applied to Biomass Pyrolysis in a Fluidized Bed
,”
Int. J. Multiphase Flow
,
27
(
12
), pp.
2155
2187
.10.1016/S0301-9322(01)00059-3
44.
Beetstra
,
R.
,
van der Hoef
,
M. A.
, and
Kuipers
,
J.
,
2007
, “
Numerical Study of Segregation Using a New Drag Force Correlation for Polydisperse Systems Derived From Lattice-Boltzmann Simulations
,”
Chem. Eng. Sci.
,
62
(
1–2
), pp.
246
255
.10.1016/j.ces.2006.08.054
45.
Ding
,
J.
, and
Gidaspow
,
D.
,
1990
, “
A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow
,”
AIChE J.
,
36
(
4
), pp.
523
538
.10.1002/aic.690360404
46.
Syamlal
,
M.
, and
O'Brien
,
T. J.
,
1988
, “
Simulation of Granular Layer Inversion in Liquid Fluidized Beds
,”
Int. J. Multiphase Flow
,
14
(
4
), pp.
473
481
.10.1016/0301-9322(88)90023-7
47.
Wen
,
C.
, and
Yu
,
Y.
,
1966
, “
Mechanics of Fluidization
,”
Chemical Engineering Progress Symposium Series
, Vol.
62
, New York, Jan. 1, pp.
100
111
.
48.
Hill
,
R. J.
,
Koch
,
D. L.
, and
Ladd
,
A. J. C.
,
2001
, “
Moderate-Reynolds-Number Flows in Ordered and Random Arrays of Spheres
,”
J. Fluid Mech.
,
448
, pp.
243
278
.10.1017/S0022112001005936
49.
Hill
,
R. J.
,
Koch
,
D. L.
, and
Ladd
,
A. J. C.
,
2001
, “
The First Effects of Fluid Inertia on Flows in Ordered and Random Arrays of Spheres
,”
J. Fluid Mech.
,
448
, pp.
213
241
.10.1017/S0022112001005948
50.
Anderson
,
T. B.
, and
Jackson
,
R.
,
1967
, “
Fluid Mechanical Description of Fluidized Beds. Equations of Motion
,”
Ind. Eng. Chem. Fundam.
,
6
(
4
), pp.
527
539
.10.1021/i160024a007
51.
Bernardo
,
S.
,
Mori
,
M.
,
Peres
,
A. P.
, and
Dionísio
,
R. P.
,
2006
, “
3-D Computational Fluid Dynamics for Gas and Gas-Particle Flows in a Cyclone With Different Inlet Section Angles
,”
Powder Technol.
,
162
(
3
), pp.
190
200
.10.1016/j.powtec.2005.11.007
52.
Davies
,
C. N.
,
1945
, “
Definitive Equations for the Fluid Resistance of Spheres
,”
Proc. Phys. Soc.
,
57
(
4
), pp.
259
270
.10.1088/0959-5309/57/4/301
53.
Reist
,
P. C.
,
1992
,
Aerosol Science and Technology
,
McGraw-Hill
,
New York
.
54.
Hinds
,
W. C.
,
2012
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
Wiley-Interscience
, NJ.
55.
Heyder
,
J.
,
Gebhart
,
J.
,
Rudolf
,
G.
,
Schiller
,
C. F.
, and
Stahlhofen
,
W.
,
1986
, “
Deposition of Particles in the Human Respiratory Tract in the Size Range 0.005–15 mm
,”
J. Aerosol Sci.
,
17
(
5
), pp.
811
825
.10.1016/0021-8502(86)90035-2
56.
Bharadwaj
,
R.
,
Smith
,
C.
, and
Hancock
,
B. C.
,
2010
, “
The Coefficient of Restitution of Some Pharmaceutical Tablets/Compacts
,”
Int. J. Pharm.
,
402
(
1–2
), pp.
50
56
.10.1016/j.ijpharm.2010.09.018
57.
Gel
,
A.
,
Garg
,
R.
,
Tong
,
C.
,
Shahnam
,
M.
, and
Guenther
,
C.
,
2013
, “
Applying Uncertainty Quantification to Multiphase Flow Computational Fluid Dynamics
,”
Powder Technol.
,
242
, pp.
27
39
.10.1016/j.powtec.2013.01.045
You do not currently have access to this content.