Abstract

Vibration energy harvesting (VEH) is a promising alternative for powering wireless electronics in many practical applications. Ambient vibration energy in the surrounding space of a target application often involves an inescapable randomness in the exciting vibrations, which may lead to deterioration of the expected power gains due to insufficient tuning and limited optimal designs. Stochastic resonance (SR) is a concept that has recently been considered for exploiting this randomness toward improving power generation from vibrating systems, based on the coexistence of near-harmonic vibrations with broadband noise excitations in a variety of practical mechanical systems. This paper is concerned with the optimal conditions for SR in vibration energy harvesters, exploring the frequently neglected effect of realistic architectures of the electrical circuit on the system dynamics and the achievable power output. A parametric study is conducted using a numerical path integration (PI) method to compute the response probability density functions (PDFs) of vibration energy harvesters, focusing on the effect of standard electrical components; namely, a load resistor, a rectifier, and a capacitor. It is found that the conditions for SR exhibit a nonlinear dependence on the weak harmonic excitation amplitude. Moreover, the modified nonlinear dissipation properties introduced by the rectifier and the capacitor lead to a tradeoff between the power output and the nonconducting dynamics that is essential in order to determine optimal harvesting designs.

References

1.
Marin
,
A.
,
Turner
,
J.
,
Ha
,
D. S.
, and
Priya
,
S.
,
2013
, “
Broadband Electromagnetic Vibration Energy Harvesting System for Powering Wireless Sensor Nodes
,”
Smart Mater. Struct.
,
22
(
7
), p.
075008
.10.1088/0964-1726/22/7/075008
2.
Stephen
,
N. G.
,
2006
, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
,
293
(
1–2
), pp.
409
425
.10.1016/j.jsv.2005.10.003
3.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.10.1115/1.2890402
4.
Mann
,
B. P.
, and
Sims
,
N. D.
,
2009
, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
(
1–2
), pp.
515
530
.10.1016/j.jsv.2008.06.011
5.
Zhang
,
Y.
,
Jin
,
Y.
, and
Xu
,
P.
,
2020
, “
Dynamics of a Coupled Nonlinear Energy Harvester Under Colored Noise and Periodic Excitations
,”
Int. J. Mech. Sci.
,
172
, p.
105418
.10.1016/j.ijmecsci.2020.105418
6.
Alevras
,
P.
,
Theodossiades
,
S.
, and
Rahnejat
,
H.
,
2017
, “
Broadband Energy Harvesting From Parametric Vibrations of a Class of Nonlinear Mathieu Systems
,”
Appl. Phys. Lett.
,
110
(
23
), p.
233901
.10.1063/1.4984059
7.
Alevras
,
P.
,
Theodossiades
,
S.
, and
Rahnejat
,
H.
,
2018
, “
On the Dynamics of a Nonlinear Energy Harvester With Multiple Resonant Zones
,”
Nonlinear Dyn
,
92
(
3
), pp.
1271
1286
.10.1007/s11071-018-4124-2
8.
Yurchenko
,
D.
,
Burlon
,
A.
,
Paola
,
M. D.
,
Failla
,
G.
, and
Pirrotta
,
A.
,
2017
, “
Approximate Analytical Mean-Square Response of an Impacting Stochastic System Oscillator With Fractional Damping
,”
ASME J. Risk Uncertainty Part B
,
3
(
3
), p.
030903
.10.1115/1.4036701
9.
Nayfeh
,
A. H.
, and
Pai
,
P. F.
,
2004
,
Linear and Nonlinear Structural Mechanics
,
Wiley
,
New York
.
10.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.10.1088/0964-1726/22/2/023001
11.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2011
, “
Relative Performance of a Vibratory Energy Harvester in Mono- and Bi-Stable Potentials
,”
J. Sound Vib.
,
330
(
24
), pp.
6036
6052
.10.1016/j.jsv.2011.07.031
12.
Daqaq
,
M. F.
,
2011
, “
Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise
,”
J. Sound Vib.
,
330
(
11
), pp.
2554
2564
.10.1016/j.jsv.2010.12.005
13.
Zhu
,
H. T.
,
2015
, “
Probabilistic Solution of a Duffing-Type Energy Harvester System Under Gaussian White Noise
,”
ASME J. Risk Uncertainty Part B
,
1
(
1
), p.
011005
.10.1115/1.4029143
14.
Kougioumtzoglou
,
I. A.
,
Zhang
,
Y.
, and
Beer
,
M.
,
2016
, “
Softening Duffing Oscillator Reliability Assessment Subject to Evolutionary Stochastic Excitation
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A
,
2
(
2
), p.
C4015001
.10.1061/AJRUA6.0000828
15.
McInnes
,
C. R.
,
Gorman
,
D. G.
, and
Cartmell
,
M. P.
,
2008
, “
Enhanced Vibrational Energy Harvesting Using Nonlinear Stochastic Resonance
,”
J. Sound Vib.
,
318
(
4–5
), pp.
655
662
.10.1016/j.jsv.2008.07.017
16.
Gammaitoni
,
L.
,
Hänggi
,
P.
,
Jung
,
P.
, and
Marchesoni
,
F.
,
1998
, “
Stochastic Resonance
,”
Rev. Mod. Phys.
,
70
(
1
), pp.
223
287
.10.1103/RevModPhys.70.223
17.
Zheng
,
R.
,
Nakano
,
K.
,
Hu
,
H.
,
Su
,
D.
, and
Cartmell
,
M. P.
,
2014
, “
An Application of Stochastic Resonance for Energy Harvesting in a Bistable Vibrating System
,”
J. Sound Vib.
,
333
(
12
), pp.
2568
2587
.10.1016/j.jsv.2014.01.020
18.
Zhang
,
Y.
,
Zheng
,
R.
,
Shimono
,
K.
,
Kaizuka
,
T.
, and
Nakano
,
K.
,
2016
, “
Effectiveness Testing of a Piezoelectric Energy Harvester for an Automobile Wheel Using Stochastic Resonance
,”
Sensors
,
16
(
10
), pp.
1727
1716
.10.3390/s16101727
19.
Kim
,
H.
,
Tai
,
W. C.
,
Parker
,
J.
, and
Zuo
,
L.
,
2019
, “
Self-Tuning Stochastic Resonance Energy Harvesting for Rotating Systems Under Modulated Noise and Its Application to Smart Tires
,”
Mech. Syst. Signal Process.
,
122
, pp.
769
785
.10.1016/j.ymssp.2018.12.040
20.
Kim
,
H.
,
Tai
,
W. C.
, and
Zuo
,
L.
,
2018
, “
Self-Tuning Stochastic Resonance Energy Harvester for Smart Tires
,”
Proc. SPIE
10595
, p.
105950U
.10.1117/12.2296689
21.
Chen
,
Z.
,
Guo
,
B.
,
Xiong
,
Y.
,
Cheng
,
C.
, and
Yang
,
Y.
,
2016
, “
Melnikov-Method-Based Broadband Mechanism and Necessary Conditions of Nonlinear Rotating Energy Harvesting Using Piezoelectric Beam
,”
J. Intell. Mater. Syst. Struct.
,
27
(
18
), pp.
2555
2567
.10.1177/1045389X16635844
22.
Zhang
,
Y.
,
Zheng
,
R.
,
Kaizuka
,
T.
,
Su
,
D.
,
Nakano
,
K.
, and
Cartmell
,
M. P.
,
2015
, “
Broadband Vibration Energy Harvesting by Application of Stochastic Resonance From Rotational Environments
,”
Eur. Phys. J. Spec. Top.
,
224
(
14–15
), pp.
2687
2701
.10.1140/epjst/e2015-02583-7
23.
Zhang
,
Y.
, and
Jin
,
Y.
,
2019
, “
Stochastic Dynamics of a Piezoelectric Energy Harvester With Correlated Colored Noises From Rotational Environment
,”
Nonlinear Dyn.
,
98
(
1
), pp.
501
515
.10.1007/s11071-019-05208-x
24.
Jiang
,
W.-A.
, and
Chen
,
L.-Q.
,
2016
, “
Stochastic Averaging of Energy Harvesting Systems
,”
Int. J. Non-Linear Mech.
,
85
, pp.
174
187
.10.1016/j.ijnonlinmec.2016.07.002
25.
Jiang
,
W.-A.
, and
Chen
,
L.-Q.
,
2016
, “
Stochastic Averaging Based on Generalized Harmonic Functions for Energy Harvesting Systems
,”
J. Sound Vib.
,
377
, pp.
264
283
.10.1016/j.jsv.2016.05.012
26.
Xu
,
M.
, and
Li
,
X.
,
2018
, “
Stochastic Averaging for Bistable Vibration Energy Harvesting System
,”
Int. J. Mech. Sci.
,
141
, pp.
206
212
.10.1016/j.ijmecsci.2018.04.014
27.
Yang
,
T.
,
Liu
,
J.
, and
Cao
,
Q.
,
2018
, “
Response Analysis of the Archetypal Smooth and Discontinuous Oscillator for Vibration Energy Harvesting
,”
Phys. A
,
507
, pp.
358
373
.10.1016/j.physa.2018.05.103
28.
Liu
,
D.
,
Wu
,
Y.
,
Xu
,
Y.
, and
Li
,
J.
,
2019
, “
Stochastic Response of Bistable Vibration Energy Harvesting System Subject to Filtered Gaussian White Noise
,”
Mech. Syst. Signal Process.
,
130
, pp.
201
212
.10.1016/j.ymssp.2019.05.004
29.
Zhang
,
Y.
,
Jin
,
Y.
, and
Xu
,
P.
,
2019
, “
Stochastic Resonance and Bifurcations in a Harmonically Driven Tri-Stable Potential With Colored Noise
,”
Chaos
,
29
(
2
), p.
023127
.10.1063/1.5053479
30.
Zhang
,
H.
,
Corr
,
L. R.
, and
Ma
,
T.
,
2018
, “
Effects of Electrical Loads Containing Non-Resistive Components on Electromagnetic Vibration Energy Harvester Performance
,”
Mech. Syst. Signal Process.
,
101
, pp.
55
66
.10.1016/j.ymssp.2017.08.031
31.
Daqaq
,
M. F.
,
Crespo
,
R. S.
, and
Ha
,
S.
,
2020
, “
On the Efficacy of Charging a Battery Using a Chaotic Energy Harvester
,”
Nonlinear Dyn.
,
99
(
2
), pp.
1525
1537
.10.1007/s11071-019-05372-0
32.
Dai
,
Q.
, and
Harne
,
R. L.
,
2018
, “
Investigation of Direct Current Power Delivery From Nonlinear Vibration Energy Harvesters Under Combined Harmonic and Stochastic Excitations
,”
J. Intell. Mater. Syst. Struct.
,
29
(
4
), pp.
514
529
.10.1177/1045389X17711788
33.
Dai
,
Q.
, and
Harne
,
R. L.
,
2018
, “
Charging Power Optimization for Nonlinear Vibration Energy Harvesting Systems Subjected to Arbitrary, Persistent Base Excitations
,”
Smart Mater. Struct.
,
27
(
1
), p.
015011
.10.1088/1361-665X/aa9a13
34.
Hänggi
,
P.
,
Talkner
,
P.
, and
Borkovec
,
M.
,
1990
, “
Reaction-Rate Theory: Fifty Years After Kramers
,”
Rev. Mod. Phys.
,
62
(
2
), pp.
251
341
.10.1103/RevModPhys.62.251
35.
Tweten
,
D. J.
, and
Mann
,
B. P.
,
2014
, “
Experimental Investigation of Colored Noise in Stochastic Resonance of a Bistable Beam
,”
Phys. D
,
268
, pp.
25
33
.10.1016/j.physd.2013.10.010
36.
Yurchenko
,
D.
,
Naess
,
A.
, and
Alevras
,
P.
,
2013
, “
Pendulum's Rotational Motion Governed by a Stochastic Mathieu Equation
,”
Probab. Eng. Mech.
,
31
, pp.
12
18
.10.1016/j.probengmech.2012.10.004
37.
Alevras
,
P.
, and
Yurchenko
,
D.
,
2016
, “
GPU Computing for Accelerating the Numerical Path Integration Approach
,”
Comput. Struct.
,
171
, pp.
46
53
.10.1016/j.compstruc.2016.05.002
38.
Naess
,
A.
, and
Moe
,
V.
,
2000
, “
Efficient Path Integration Methods for Nonlinear Dynamic Systems
,”
Probab. Eng. Mech.
,
15
(
2
), pp.
221
231
.10.1016/S0266-8920(99)00031-4
39.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2018
, “
Stochastic Response Determination and Optimization of a Class of Nonlinear Electromechanical Energy Harvesters: A Wiener Path Integral Approach
,”
Probab. Eng. Mech.
,
53
, pp.
116
125
.10.1016/j.probengmech.2018.06.004
40.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2012
, “
An Analytical Wiener Path Integral Technique for Non-Stationary Response Determination of Nonlinear Oscillators
,”
Probab. Eng. Mech.
,
28
, pp.
125
131
.10.1016/j.probengmech.2011.08.022
41.
Zhang
,
C.
,
Harne
,
R. L.
,
Li
,
B.
, and
Wang
,
K. W.
,
2019
, “
Statistical Quantification of DC Power Generated by Bistable Piezoelectric Energy Harvesters When Driven by Random Excitations
,”
J. Sound Vib.
,
442
(
2019
), pp.
770
786
.10.1016/j.jsv.2018.11.032
You do not currently have access to this content.