Abstract

Most of the allowable design strain in high-temperature component occurs in the primary creep stage, so the accumulation of creep strain in this stage must be considered. Performance degradation of 12Cr1MoVG steel during interrupted creep test at 580 °C and 110 MPa was assessed by the flat micro-indentation method, whereas the creep deformation and microstructural evolution due to primary creep were also evaluated by combination of scanning electron microscopy (SEM) and electron backscattered diffraction. The energy density equivalent model established for flat indentation was introduced to evaluate the macromechanical properties of the 12Cr1MoVG at different creep times, with the overall strain hardening behavior attributed to microstructural degradation associated with precipitates, dislocation substructure and cavities nucleation. Based on the Larson–Miller parameter (LMP), an unusual softening behavior was also found during creep, significantly counteracting the strengthening and work hardening of the steel. Through examining the low-angle grain boundaries and dislocation density distributions, the sudden reduction in creep strength is the result of the dynamic recovery of substructure, which is linked to the rearrangement of dislocation structure into cells by glide and climb processes. It suggested that the flat indentation method is advantageous for microdestructive assessment of early degradation of 12Cr1MoVG steel during the primary stage.

References

1.
Wang
,
J.
,
Sun
,
J.
,
Yu
,
X.
,
Chen
,
G.
,
Fu
,
Q.
,
Gao
,
C.
, and
Tang
,
W.
,
2017
, “
Microstructures and Mechanical Properties of 12cr1movg Tube Welded Joints With/Without Post-Weld Heat Treatment
,”
J. Mater. Eng. Perform.
,
26
(
10
), pp.
4659
4666
.10.1007/s11665-017-2936-8
2.
Rojas
,
D.
,
Garcia
,
J.
,
Prat
,
O.
,
Sauthoff
,
G.
, and
Kaysser-Pyzalla
,
A. R.
,
2011
, “
9% Cr Heat Resistant Steels: Alloy Design, Microstructure Evolution and Creep Response at 650 °C
,”
Mater. Sci. Eng.: A
,
528
(
15
), pp.
5164
5176
.10.1016/j.msea.2011.03.037
3.
Hkdh
,
B.
,
2001
, “
Design of Ferritic Creep-Resistant Steels
,”
ISIJ Int.
,
41
(
6
), pp.
626
640
.10.2355/isijinternational.41.626
4.
Zhang
,
J.
,
Hu
,
Z.
,
Zhai
,
G.
,
Zhang
,
Z.
, and
Gao
,
Z.
,
2022
, “
Creep Damage Characteristics and Evolution of HR3C Austenitic Steel During Long Term Creep
,”
Mater. Sci. Eng.: A
,
832
, p.
142432
.10.1016/j.msea.2021.142432
5.
Wang
,
K.
,
Liu
,
X.
,
Fan
,
P.
,
Zhu
,
L.
,
Zhang
,
K.
,
Hou
,
W.
, and
Wang
,
L.
,
2022
, “
Creep Behavior and Life Prediction of P91 Heat-Resistant Steel Using Modified Wilshire Model
,”
Int. J. Pressure Vessels Piping
,
199
, p.
104726
.10.1016/j.ijpvp.2022.104726
6.
He
,
J.
,
Yang
,
K.
,
Wang
,
G.
,
Li
,
W.
,
Bao
,
J.
, and
Chen
,
J.
,
2020
, “
Study on Tensile Creep Behavior of 12Cr1MoV Alloy Steel Under High-Temperature Alkali Metal Salt Environment for Solar Thermal Power Generation
,”
Int. J. Photoenergy
,
2020
, pp.
1
9
.10.1155/2020/7095872
7.
Pan
,
J.
,
Zhu
,
C.
,
Zhu
,
X.
, and
Tan
,
L.
,
2020
, “
High-Temperature Creep Behavior of 12Cr1MoVG Steel
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
735
(
1
), p.
012050
.10.1088/1757-899X/735/1/012050
8.
Pan
,
J.
,
Xu
,
B.
,
Zhu
,
X.
,
Yu
,
X.
, and
Tan
,
L.
,
2021
, “
Structural Changes of 12Cr1MoVG Steel During High-Temperature Creep
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1040
(
1
), p.
012013
.10.1088/1757-899X/1040/1/012013
9.
Piotrowski
,
L.
,
Chmielewski
,
M.
,
Golański
,
G.
, and
Wieczorek
,
P.
,
2019
, “
Analysis of the Possibility of Creep Damage Detection in T24 Heat Resistant Steel With the Help of Magnetic Nondestestructive Testing Methods
,”
Eng. Failure Anal.
,
102
, pp.
384
394
.10.1016/j.engfailanal.2019.04.054
10.
Sposito
,
G.
,
Ward
,
C.
,
Cawley
,
P.
,
Nagy
,
P. B.
, and
Scruby
,
C.
,
2010
, “
A Review of Non-Destructive Techniques for the Detection of Creep Damage in Power Plant Steels
,”
NDT E Int.
,
43
(
7
), pp.
555
567
.10.1016/j.ndteint.2010.05.012
11.
Shen
,
Z. X.
,
Xu
,
B.
,
Zhou
,
J.
,
Zhu
,
G. R.
,
Chen
,
H.
,
Zheng
,
Y.
,
Niu
,
Y. P.
,
Zhang
,
H. Q.
, and
Wang
,
Q.
,
2024
, “
Diagnosis of Early Creep Degradation in 12Cr1MoVG Steel Based on a Hybrid Magnetic NDE Approach
,”
Eng. Failure Anal.
,
161
, p.
108319
.10.1016/j.engfailanal.2024.108319
12.
Xiao
,
H. R.
,
Cai
,
L. X.
,
Liu
,
X. K.
, and
Ji
,
C. B.
,
2022
, “
Semi-Analytical Model and Mechanical Test Method of Flat Indentation for Ductile Materials
,”
Mater. Today Commun.
,
33
, p.
104202
.10.1016/j.mtcomm.2022.104202
13.
Zhang
,
Y.
,
Cai
,
L.
,
Han
,
G.
, and
Xiao
,
H.
,
2023
, “
Semi-Analytical Model for Predicting Mechanical Properties of Metals Using Flat Truncated Cone Indenter and Its Application
,”
Results Phys.
,
53
, p.
106993
.10.1016/j.rinp.2023.106993
14.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
15.
Chen
,
H.
, and
Cai
,
L. X.
,
2016
, “
Theoretical Model for Predicting Uniaxial Stress-Strain Relation by Dual Conical Indentation Based on Equivalent Energy Principle
,”
Acta Mater.
,
121
, pp.
181
189
.10.1016/j.actamat.2016.09.008
16.
Kruzic
,
J. J.
,
Kim
,
D. K.
,
Koester
,
K. J.
, and
Ritchie
,
R. O.
,
2009
, “
Indentation Techniques for Evaluating the Fracture Toughness of Biomaterials and Hard Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
4
), pp.
384
395
.10.1016/j.jmbbm.2008.10.008
17.
Futakawa
,
M.
,
Wakui
,
T.
,
Tanabe
,
Y.
, and
Ioka
,
I.
,
2001
, “
Identification of the Constitutive Equation by the Indentation Technique Using Plural Indenters With Different Apex Angles
,”
J. Mater. Res.
,
16
(
8
), pp.
2283
2292
.10.1557/JMR.2001.0314
18.
Holdsworth
,
S. R.
,
Askins
,
M.
,
Baker
,
A.
,
Gariboldi
,
E.
,
Holmström
,
S.
,
Klenk
,
A.
,
Ringel
,
M.
, et al.,
2008
, “
Factors Influencing Creep Model Equation Selection
,”
Int. J. Pressure Vessels Piping
,
85
(
1–2
), pp.
80
88
.10.1016/j.ijpvp.2007.06.009
19.
May
,
D. L.
,
Gordon
,
A. P.
, and
Segletes
,
D. S.
,
2013
, “
The Application of the Norton-Bailey Law for Creep Prediction Through Power Law Regression
,”
ASME
Paper No. GT2013-96008.10.1115/GT2013-96008
20.
Esposito
,
L.
, and
Bonora
,
N.
,
2012
, “
Primary Creep Modeling Based on the Dependence of the Activation Energy on the Internal Stress
,”
ASME J. Pressure Vessel Technol.
,
134
(
6
), p.
061401
.10.1115/1.4006856
21.
Song
,
S. H.
,
Wu
,
J.
,
Wei
,
X. J.
,
Kumar
,
D.
,
Liu
,
S. J.
, and
Weng
,
L. Q.
,
2010
, “
Creep Property Evaluation of a 2.25 Cr–1Mo Low Alloy Steel
,”
Mater. Sci. Eng.: A
,
527
(
9
), pp.
2398
2403
.10.1016/j.msea.2010.01.007
22.
Sherby
,
O. D.
, and
Weertman
,
J.
,
1979
, “
Diffusion-Controlled Dislocation Creep: A Defense
,”
Acta Metall.
,
27
(
3
), pp.
387
400
.10.1016/0001-6160(79)90031-2
23.
Liu
,
X. K.
,
Cai
,
L. X.
,
Chen
,
H.
, and
Si
,
S. Q.
,
2020
, “
Semi-Analytical Model for Flat Indentation of Metal Materials and Its Applications
,”
Chin. J. Aeronaut.
,
33
(
12
), pp.
3266
3277
.10.1016/j.cja.2020.05.007
24.
Holdsworth
,
S.
,
2019
, “
Creep-Ductility of High Temperature Steels: A Review
,”
Metals
,
9
(
3
), p.
342
.10.3390/met9030342
25.
Spindler
,
M. W.
,
2004
, “
The Multiaxial Creep Ductility of Austenitic Stainless Steels
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
4
), pp.
273
281
.10.1111/j.1460-2695.2004.00732.x
26.
Hald
,
J.
,
2004
, “
Creep Strength and Ductility of 9 to 12% Chromium Steels
,”
Mater. High Temp.
,
21
(
1
), pp.
41
46
.10.1179/mht.2004.006
27.
Guo
,
X.
,
Li
,
Y.
,
Yuan
,
B.
,
Fuyang
,
C.
, and
Gong
,
J.
,
2023
, “
Creep Damage Mechanism of 20Cr32Ni1Nb Steel at High Temperatures
,”
Int. J. Pressure Vessels Piping
,
205
, p.
104987
.10.1016/j.ijpvp.2023.104987
28.
Shi
,
S.
, and
Lippold
,
J. C.
,
2008
, “
Microstructure Evolution During Service Exposure of Two Cast, Heat-Resisting Stainless steels-HP-Nb Modified and 20–32 Nb
,”
Mater. Charact.
,
59
(
8
), pp.
1029
1040
.10.1016/j.matchar.2007.08.029
29.
Pohja
,
R.
,
Auerkari
,
P.
, and
Vilaça
,
P.
,
2022
, “
Modelling for Creep Cavitation Damage and Life of Three Metallic Materials
,”
Mater. High Temp.
,
39
(
1
), pp.
86
96
.10.1080/09603409.2021.2024420
30.
Kassner
,
M. E.
, and
Hayes
,
T. A.
,
2003
, “
Creep Cavitation in Metals
,”
Int. J. Plast.
,
19
(
10
), pp.
1715
1748
.10.1016/S0749-6419(02)00111-0
31.
Yadav
,
S. D.
,
Sonderegger
,
B.
,
Sartory
,
B.
,
Sommitsch
,
C.
, and
Poletti
,
C.
,
2015
, “
Characterization and Quantification of Cavities in 9Cr Martensitic Steel for Power Plants
,”
Mater. Sci. Technol.
,
31
(
5
), pp.
554
564
.10.1179/1743284714Y.0000000635
32.
Guguloth
,
K.
,
Mitra
,
R.
,
Chowdhury
,
S. G.
, and
Swaminathan
,
J.
,
2018
, “
Mechanism of Creep Deformation With Evolution of Microstructure and Texture of Zr-2.5 Nb Alloy
,”
Mater. Sci. Eng.: A
,
721
, pp.
286
302
.10.1016/j.msea.2018.02.035
33.
Winning
,
M.
, and
Rollett
,
A. D.
,
2005
, “
Transition Between Low and High Angle Grain Boundaries
,”
Acta Mater.
,
53
(
10
), pp.
2901
2907
.10.1016/j.actamat.2005.03.005
34.
Fong
,
R. W. L.
,
2013
, “
Anisotropic Deformation of Zr–2.5 Nb Pressure Tube Material at High Temperatures
,”
J. Nucl. Mater.
,
440
(
1–3
), pp.
467
476
.10.1016/j.jnucmat.2013.01.308
35.
Koike
,
J.
,
Kobayashi
,
T.
,
Mukai
,
T.
,
Watanabe
,
H.
,
Suzuki
,
M.
,
Maruyama
,
K.
, and
Higashi
,
K.
,
2003
, “
The Activity of Non-Basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys
,”
Acta Mater.
,
51
(
7
), pp.
2055
2065
.10.1016/S1359-6454(03)00005-3
36.
Chen
,
Q. Z.
, and
Knowles
,
D. M.
,
2003
, “
Mechanism of <112>/3 Slip Initiation and Anisotropy of γ′Phase in CMSX-4 During Creep at 750 °C and 750 MPa
,”
Mater. Sci. Eng.: A
,
356
(
1–2
), pp.
352
367
.10.1016/S0921-5093(03)00148-5
37.
Zhao
,
X.
,
Zhao
,
H.
,
Song
,
Y.
,
Sun
,
Z.
,
Niu
,
X.
, and
Yuan
,
S.
,
2024
, “
Micromechanical Mechanism of Creep Secondary Crack Propagation Behavior for Superalloy
,”
J. Alloys Compd.
,
981
, p.
173677
.10.1016/j.jallcom.2024.173677
38.
Peng
,
Z.
,
Liu
,
P.
,
Wang
,
X.
,
Luo
,
X.
,
Liu
,
J.
, and
Zou
,
J.
,
2021
, “
Creep Behavior of FGH96 Superalloy at Different Service Conditions
,”
Acta Metall. Sin.
,
58
(
5
), pp.
673
682
.10.11900/0412.1961.2021.00207
39.
Hugosson
,
H. W.
,
Jansson
,
U.
,
Johansson
,
B.
, and
Eriksson
,
O.
,
2001
, “
Restricting Dislocation Movement in Transition Metal Carbides by Phase Stability Tuning
,”
Science
,
293
(
5539
), pp.
2434
2437
.10.1126/science.1060512
40.
Wang
,
K.
,
Gui
,
X.
,
Bai
,
B.
, and
Gao
,
G.
,
2022
, “
Effect of Tempering on the Stability of Retained Austenite in Carbide-Free Bainitic Steel
,”
Mater. Sci. Eng.: A
,
850
, p.
143525
.10.1016/j.msea.2022.143525
41.
Zhang
,
K.
,
Liu
,
X.
,
Fan
,
P.
,
Zhu
,
L.
,
Wang
,
K.
,
Wang
,
L.
, and
Zhao
,
C.
,
2023
, “
Characterization of Geometrically Necessary Dislocation Evolution During Creep of P91 Steel Using Electron Backscatter Diffraction
,”
Mater. Charact.
,
195
, p.
112501
.10.1016/j.matchar.2022.112501
42.
McLean
,
M.
, and
Dyson
,
B. F.
,
2000
, “
Modeling the Effects of Damage and Microstructural Evolution on the Creep Behavior of Engineering Alloys
,”
ASME J. Eng. Mater. Technol.
,
122
(
3
), pp.
273
278
.10.1115/1.482798
43.
Šeruga
,
D.
, and
Nagode
,
M.
,
2011
, “
Unification of the Most Commonly Used Time–Temperature Creep Parameters
,”
Mater. Sci. Eng.: A
,
528
(
6
), pp.
2804
2811
.10.1016/j.msea.2010.12.034
44.
Parker, J., 2017, “Creep Ductility Considerations for High Energy Components Manufactured From Creep Strength Enhanced Steels,”
Mater. High Temp.
, 34(2), pp.
109
120
.10.1080/09603409.2016.1270720
45.
Besseling
,
J. F.
,
1958
, “
A Theory of Elastic, Plastic, and Creep Deformations of an Initially Isotropic Material Showing Anisotropic Strain-Hardening, Creep Recovery, and Secondary Creep
,”
ASME J. Appl. Mech.
,
25
(
4
), pp.
529
536
.10.1115/1.4011867
46.
Lagneborg
,
R.
,
1968
, “
Recovery Creep in Materials Hardened by a Second Phase
,”
J. Mater. Sci.
,
3
(
6
), pp.
596
602
.10.1007/BF00757905
47.
Alden
,
T. H.
,
1977
, “
Strain Hardening and Recovery in Lead During Primary Creep
,”
Metall. Trans. A
,
8
(
12
), pp.
1857
1862
.10.1007/BF02646557
48.
Morris
,
M. A.
, and
Martin
,
J. L.
,
1984
, “
Evolution of Internal Stresses and Substructure During Creep at Intermediate Temperatures
,”
Acta Metall.
,
32
(
4
), pp.
549
561
.10.1016/0001-6160(84)90066-X
49.
Alden, T. H., 1975, “Cellular Microstructure and Plasticity of Lead at High Temperature,”
Metall. Trans. A
, 6, pp. 1597–1605.10.1007/BF02641973
50.
Liang
,
Z.
,
Xiao
,
S.
,
Li
,
Q.
,
Li
,
X.
,
Chi
,
D.
,
Zheng
,
Y.
,
Xu
,
L.
,
Xue
,
X.
,
Tian
,
J.
, and
Chen
,
Y.
,
2023
, “
Creep Behavior and Related Phase Precipitation of a Creep-Resistant Y2O3-Bearing High Nb Containing TiAl Alloy
,”
Mater. Charact.
,
198
, p.
112767
.10.1016/j.matchar.2023.112767
51.
Shen
,
Z. X.
,
Chen
,
H.
,
Huang
,
H. D.
,
Chai
,
J. H.
,
Niu
,
Y. P.
,
Wang
,
D.
, and
Zhang
,
Z. J.
,
2022
, “
A Method for Quickly Evaluating Heat Treatment Quality of 35CrMo Steel Cylinder Using Magnetic Properties
,”
J. Magn. Magn. Mater.
,
543
, p.
168622
.10.1016/j.jmmm.2021.168622
You do not currently have access to this content.