Abstract

The performance of a reciprocating pump–pipeline system is often limited by the fluid dynamic interaction between pump, pipeline, and valves. In this paper, the fluid dynamic characteristics of a reciprocating pump–pipeline system are investigated via experiments and numerical analysis. A simple experimental platform consisting of a reciprocating pump, suction and discharge pipes, and flow control valve are offered and the experimental tests under multiworking conditions are carried out to explore the fluid dynamic interaction of the reciprocating pump–pipeline system. Combined with theoretical analysis and computational fluid dynamics (CFD) simulations, a dynamic model of the pump–pipeline system is presented with considering the fluid dynamic interaction effect of pump valves, plunger stroke, and flow control valve. All of the predicted results coincide well with the experimental data, and the inherent mechanism and the feature of the fluid dynamic interaction are revealed by experiments and numerical analysis. It is shown that the fluid dynamic characteristics of pipeline significantly influence the lag phenomenon and the motion behaviors of pump valves. The discharge flowrate rises nonlinearly with the increase of plunger stroke and the leakage rate is associated with the resistance of flow control valve. The pressure pulsation in discharge pipe is directly related to and markedly impacted by the control valve opening and the plunger stroke. However, the influence of the reservoir liquid-level on the system dynamic behavior is relatively slight. This work would give information for the optimum design and operation maintenance of reciprocating pump–pipeline system.

Reference

1.
Lu
,
H.
,
Wu
,
X.
, and
Huang
,
K.
,
2018
, “
Study on the Effect of Reciprocating Pump Pipeline System Vibration on Oil Transportation Stations
,”
Energies
,
11
(
1
), p.
132
.10.3390/en11010132
2.
Yan
,
G.
,
Zhao
,
J.
, and
Dong
,
Y.
,
2004
, “
Study on Kinematics of Reciprocating Pump Valve
,”
China Mech. Eng.
,
15
(
18
), pp.
1617
1619
.
3.
Adolph
,
U.
,
1968
, “
Berechnung Des Arbeitsspiels Selbsttatiger Ventile Schnellaufender Kolbenpumpen
,”
Maschinebautechnik
,
17
(
4
), pp.
189
193
.
4.
Dong
,
S.
,
Wang
,
C.
, and
Yan
,
L.
,
2001
, “
A New Model and Simulation of the Movement of Self-Acting Conical Valve of Reciprocating Pumps
,”
Fluid Mach.
,
29
, pp.
19
22
.
5.
Pei
,
J.
,
He
,
C.
,
Lv
,
M.
,
Huang
,
X.
,
Shen
,
K.
, and
Bi
,
K.
,
2016
, “
The Valve Motion Characteristics of a Reciprocating Pump
,”
Mech. Syst. Signal Process.
,
66
, pp.
657
664
.10.1016/j.ymssp.2015.06.013
6.
Habing
,
R.
, and
Peters
,
M.
,
2006
, “
An Experimental Method for Validating Compressor Valve Vibration Theory
,”
J. Fluids Struct.
,
22
(
5
), pp.
683
697
.10.1016/j.jfluidstructs.2006.03.003
7.
Lee
,
J.
,
Jung
,
J.
,
Chai
,
J.
, and
Lee
,
J.
,
2015
, “
Mathematical Modeling of Reciprocating Pump
,”
J. Mech. Sci. Technol.
,
29
(
8
), pp.
3141
3151
.10.1007/s12206-015-0713-x
8.
Lee
,
J.
,
Kim
,
T.
,
Kim
,
H.
,
Chai
,
J.
, and
Lee
,
J.
,
2016
, “
Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants
,”
Nucl. Eng. Technol.
,
48
(
5
), pp.
1280
1290
.10.1016/j.net.2016.04.007
9.
Yang
,
Y.
,
Zhang
,
H.
,
Xu
,
Y.
,
Zhao
,
R.
,
Hou
,
X.
, and
Liu
,
Y.
,
2018
, “
Experimental Study and Performance Analysis of a Hydraulic Diaphragm Metering Pump Used in Organic Rankine Cycle System
,”
Appl. Therm. Eng.
,
132
, pp.
605
612
.10.1016/j.applthermaleng.2018.01.001
10.
Ma
,
Y.
,
Ni
,
Y.
,
Zhang
,
H.
,
Zhou
,
S.
, and
Deng
,
H.
,
2018
, “
Influence of Valve's Lag Characteristic on Pressure Pulsation and Performance of Reciprocating Multiphase Pump
,”
J. Pet. Sci. Eng.
,
164
, pp.
584
594
.10.1016/j.petrol.2018.02.007
11.
Ma
,
Y.
,
Luo
,
H.
,
Gao
,
T.
, and
Zhang
,
Z.
,
2017
, “
Transient Flow Study of a Novel Three-Cylinder Double-Acting Reciprocating Multiphase Pump
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101101
.10.1115/1.4036715
12.
Ma
,
Y.
,
Luo
,
H.
,
Zhang
,
Z.
,
Zhou
,
S.
, and
Deng
,
H.
,
2017
, “
Numerical Modeling of Dynamic Characterics for Combined Valves in Multiphase Pump
,”
Eng. Appl. Comput. Fluid Mech.
,
11
(
1
), pp.
328
339
.10.1080/19942060.2017.1292409
13.
Zhao
,
B.
,
Jia
,
X.
,
Sun
,
S.
,
Wen
,
J.
, and
Peng
,
X.
,
2018
, “
FSI Model of Valve Motion and Pressure Pulsation for Investigating Thermodynamic Process and Internal Flow Inside a Reciprocating Compressor
,”
Appl. Therm. Eng.
,
13
, pp.
998
1007
.10.1016/j.applthermaleng.2017.11.151
14.
Nikpour
,
M.
,
Nazemi
,
A.
,
Dalir
,
A.
,
Shoja
,
F.
, and
Varjavand
,
P.
,
2014
, “
Experimental and Numerical Simulation of Water Hammer
,”
Arabian J. Sci. Eng.
,
39
(
4
), pp.
2669
2675
.10.1007/s13369-013-0942-1
15.
Singh
,
R.
, and
Soedel
,
W.
,
1979
, “
Mathematical Modeling of Multicylinder Compressor Discharge System Interactions
,”
J. Sound Vib.
,
63
(
1
), pp.
125
143
.10.1016/0022-460X(79)90382-1
16.
Elson
,
J.
, and
Soedel
,
W.
,
1974
, “
Simulation of the Interaction of Compressor Valves With Acoustic Back Pressures in Long Discharge Lines
,”
J. Sound Vib.
,
34
(
2
), pp.
211
220
.10.1016/S0022-460X(74)80305-6
17.
Chaudhry
,
M.
,
1979
,
Applied Hydraulic Transients
,
Van Nostrand Reinhold
,
New York
.
18.
Brunone
,
B.
, and
Golia
,
U.
,
1992
, “
Some Considerations on Velocity Profiles in Unsteady Pipe Flows
,”
Entropy and Energy Dissipation in Water Resources
,
V. P.
Singh
, and
M.
Fiorentino
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
481
487
.
19.
Bergant
,
A.
,
Ross
,
S.
, and
Vìtkovsk
,
J.
,
2001
, “
Developments in Unsteady Pipe Flow Friction Modelling
,”
J. Hydraul. Res.
,
39
(
3
), pp.
249
257
.10.1080/00221680109499828
20.
Vetter
,
G.
, and
Schweinfurther
,
F.
,
1987
, “
Pressure Pulsations in the Piping of Reciprocating Pumps
,”
Chem. Eng. Technol.
,
10
(
1
), pp.
262
271
.10.1002/ceat.270100132
21.
Johnston
,
D.
,
1991
, “
Numerical Modelling of Reciprocating Pumps With Self-Acting Valves
,”
Proc. Inst. Mech. Eng., Part I
,
205
(
2
), pp.
87
96
.10.1243/PIME_PROC_1991_205_318_02
22.
Shu
,
J.
,
Burrows
,
C.
, and
Edge
,
K.
,
1997
, “
Pressure Pulsations in Reciprocating Pump Piping Systems Part 1: Modelling
,”
Proc. Inst. Mech. Eng., Part I
,
211
(
3
), pp.
229
235
.10.1243/0959651971539768
23.
Singh
,
P.
, and
Madavan
,
N.
,
1987
, “
Complete Analysis and Simulation of Reciprocating Pumps Including System Piping
,”
Proceedings of the 4th International Pump Symposium
,
Houston, TX
, May 5–7, pp.
55
73
.https://www.911metallurgist.com/blog/wpcontent/uploads/2016/01/Complete-Analysis-and-Simulation-of-Reciprocating-Pumps-Including-System-Piping.pdf
24.
Gu
,
Z.
,
Bai
,
C.
, and
Zhang
,
H.
,
2021
, “
Nonlinear Dynamic Modeling and Fluid–Mechanism Interaction Analysis of Reciprocating Pump–Pipeline System
,”
Proc. Inst. Mech. Eng., Part I
,
235
(
6
), pp.
869
880
.10.1177/0959651820965108
25.
Bergada
,
J.
,
Kumar
,
S.
,
Davies
,
D.
, and
Watton
,
J.
,
2012
, “
A Complete Analysis of Axial Piston Pump Leakage and Output Flow Ripples
,”
Appl. Math. Modell.
,
36
(
4
), pp.
1731
1751
.10.1016/j.apm.2011.09.016
26.
Sheng
,
J.
,
1980
,
Hydraulic Fluid Mechanics
,
China Machine Press
,
Beijing, China
.
27.
Zhang
,
W.
,
Shi
,
H.
,
Li
,
G.
, and
Song
,
X.
,
2018
, “
Fluid Hammer Analysis With Unsteady Flow Friction Model in Coiled Tubing Drilling
,”
J. Pet. Sci. Eng.
,
167
, pp.
168
179
.10.1016/j.petrol.2018.03.088
You do not currently have access to this content.