Abstract

This paper presents an easy-to-use theoretical method and an efficient numerical method for solving free vibrations and transient responses of a circular plate coupled with fluid subjected to impact loadings and provides insights into various coupling cases with these developed methods. The Kirchhoff plate theory, Mindlin–Reissner plate theory, and the linear velocity potential function are used. The wet mode of the coupled system is described as the superposition of dry modes of the plate, which has been considered in few studies. The natural frequencies and corresponding mode shapes are solved using the orthogonality of dry modes. The transient responses of the plate are then solved using the superposition of the wet modes and the orthogonality of dry modes. To validate the theoretical results, an efficient and flexible finite element method is proposed and verified by comparing with commercial software. The four-node mixed interpolation of the tensorial component quadrilateral plate finite element (MITC4) and the eight-node acoustic pressure element are used to model the plate and the fluid, respectively. The theoretical and numerical methods provide reliable and accurate results. Parametric studies are performed to investigate the influence of geometric sizes, plate material properties, and fluid properties on the natural frequencies of the coupled system. A coupling parameter of fluid–structure interaction is proposed. The nondimensional added virtual mass incremental (NAVMI) factor decreases as the coupling parameter increases. Besides, the influence of fluid on wet modes of the plate decreases with the order.

References

1.
Lamb
,
H.
,
1920
, “
On the Vibrations of an Elastic Plate in Contact With Water
,”
Proc. R. Soc. Lond. A
,
98
(
690
), pp.
205
216
.10.1098/rspa.1920.0064
2.
McLachlan
,
N. W.
,
1932
, “
The Accession to Inertia of Flexible Discs Vibrating in a Fluid
,”
Proc. Phys. Soc.
,
44
(
5
), pp.
546
555
.10.1088/0959-5309/44/5/303
3.
Peake
,
W. H.
, and
Thurston
,
E. G.
,
1954
, “
The Lowest Resonant Frequency of a Water-Loaded Circular Plate
,”
J. Acoust. Soc. Am.
,
26
(
2
), pp.
166
168
.10.1121/1.1907302
4.
De Espinosa
,
F. M.
, and
Gallego-Juarez
,
J. A.
,
1984
, “
On the Resonance Frequencies of Water-Loaded Circular Plates
,”
J. Sound Vib.
,
94
(
2
), pp.
217
222
.10.1016/S0022-460X(84)80031-0
5.
Kwak
,
M. K.
, and
Kim
,
K. C.
,
1991
, “
Axisymmetric Vibration of Circular Plates in Contact With Fluid
,”
J. Sound Vib.
,
146
(
3
), pp.
381
389
.10.1016/0022-460X(91)90696-H
6.
Amabili
,
M.
, and
Kwak
,
M. K.
,
1996
, “
Free Vibrations of Circular Plates Coupled With Liquids: Revising the Lamb Problem
,”
J. Fluid Struct.
,
10
(
7
), pp.
743
761
.10.1006/jfls.1996.0051
7.
Cheung
,
Y. K.
, and
Zhou
,
D.
,
2002
, “
Hydroelastic Vibration of a Circular Container Bottom Plate Using the Galerkin Method
,”
J. Fluid Struct.
,
16
(
4
), pp.
561
580
.10.1006/jfls.2001.0430
8.
Tariverdilo
,
S.
,
Shahmardani
,
M.
,
Mirzapour
,
J.
, and
Shabani
,
R.
,
2013
, “
Asymmetric Free Vibration of Circular Plate in Contact With Incompressible Fluid
,”
Appl. Math. Model.
,
37
(
1–2
), pp.
228
239
.10.1016/j.apm.2012.02.025
9.
Gascon-Perez
,
M.
, and
Garcia-Fogeda
,
P.
,
2014
, “
Influence of a Liquid on the Natural Frequencies of Almost Circular Plates
,”
Int. J. Appl. Mech.
,
6
(
5
), p.
1450052
.10.1142/S1758825114500525
10.
Gascon-Perez
,
M.
, and
Garcia-Fogeda
,
P.
,
2015
, “
Induced Damping on Vibrating Circular Plates Submerged in Still Fluid
,”
Int. J. Appl. Mech.
,
7
(
6
), p.
1550079
.10.1142/S1758825115500799
11.
Escaler
,
X.
, and
De La Torre
,
O.
,
2018
, “
Axisymmetric Vibrations of a Circular Chladni Plate in Air and Fully Submerged in Water
,”
J. Fluid Struct.
,
82
, pp.
432
445
.10.1016/j.jfluidstructs.2018.07.017
12.
Yang
,
X.
,
El Baroudi
,
A.
, and
Le Pommellec
,
J. Y.
,
2020
, “
Free Vibration Investigation of Submerged Thin Circular Plate
,”
Int. J. Appl. Mech.
,
12
(
3
), p.
2050025
.10.1142/S1758825120500258
13.
Magrab
,
E. B.
, and
Reader
,
W. T.
,
1968
, “
Farfield Radiation From an Infinite Elastic Plate Excited by a Transient Point Loading
,”
J. Acoust. Soc. Am.
,
44
(
6
), pp.
1623
1627
.10.1121/1.1911305
14.
Mackertich
,
S. S.
, and
Hayek
,
S. I.
,
1981
, “
Acoustic Radiation From an Impulsively Excited Elastic Plate
,”
J. Acoust. Soc. Am.
,
69
(
4
), pp.
1021
1028
.10.1121/1.385682
15.
Scherrer
,
R.
,
Maxit
,
L.
,
Guyader
,
J.-L.
, Audoly, C., and Bertinier, M.,
2013
, “
Analysis of the Sound Radiated by a Heavy Fluid Loaded Structure Excited by an Impulsive Force
,”
Proceedings of the Internoise
, Innsbruck, Austria, Sept. 15–18, pp.
827
838
.https://hal.archives-ouvertes.fr/hal-00994597/document
16.
Davies
,
H. G.
,
1971
, “
Low Frequency Random Excitation of Water-Loaded Rectangular Plates
,”
J. Sound Vib.
,
15
(
1
), pp.
107
126
.10.1016/0022-460X(71)90363-4
17.
Ebenezer
,
D. D.
, and
Stepanishen
,
P. R.
,
1987
, “
Transient Response of Fluid-Loaded Elastic Plates Via an Impulse Response Method
,”
J. Acoust. Soc. Am.
,
82
(
2
), pp.
659
666
.10.1121/1.395415
18.
Filippi
,
P. J. T.
,
Habault
,
D.
,
Mattei
,
P.-O.
, and
Maury
,
C.
,
2001
, “
The Rôle of the Resonance Modes in the Response of a Fluid-Loaded Structure
,”
J. Sound Vib.
,
239
(
4
), pp.
639
663
.10.1006/jsvi.2000.3217
19.
Habault
,
D.
, and
Filippi
,
P. J. T.
,
2004
, “
A Numerical Method for the Computation of the Resonance Frequencies and Modes of a Fluid-Loaded Plate: Application to the Transient Response of the System
,”
J. Sound Vib.
,
270
(
1–2
), pp.
207
231
.10.1016/S0022-460X(03)00491-7
20.
Zienkiewicz
,
O. C.
,
1969
, “
Coupled Vibrations of a Structure Submerged in a Compressible Fluid
,”
Proceedings of Symposium on Finite Element Techniques Held at the University of Stuttgart
, Stuttgart, Germany, June 10–12. http://resolver.tudelft.nl/uuid:27785b4f-3709-4fa9-a189-6ce1d3365564
21.
Craggs
,
A.
,
1971
, “
The Transient Response of a Coupled Plate-Acoustic System Using Plate and Acoustic Finite Elements
,”
J. Sound Vib.
,
15
(
4
), pp.
509
528
.10.1016/0022-460X(71)90408-1
22.
Olson
,
G. L.
, and
Bathe
,
K. J.
,
1985
, “
Analysis of Fluid-Structure Interactions. A Direct Symmetric Coupled Formulation Based on the Fluid Velocity Potential
,”
Comput. Struct.
,
21
(
1–2
), pp.
21
32
.10.1016/0045-7949(85)90226-3
23.
Wang
,
X.
, and
Bathe
,
K. J.
,
1997
, “
Displacement/Pressure Based Mixed Finite Element Formulations for Acoustic Fluid–Structure Interaction Problems
,”
Int. J. Numer. Meth. Eng.
,
40
(
11
), pp.
2001
2017
.10.1002/(SICI)1097-0207(19970615)40:11<2001::AID-NME152>3.0.CO;2-W
24.
Ohayon
,
R.
,
2004
, “
Reduced Models for Fluid–Structure Interaction Problems
,”
Int. J. Numer. Meth. Eng.
,
60
(
1
), pp.
139
152
.10.1002/nme.957
25.
Kwon
,
Y. W.
, and
Owens
,
A. C.
,
2011
, “
Dynamic Responses of Composite Structures With Fluid–Structure Interaction
,”
Adv. Compos. Mater., IntechOpen Limited
, London, UK, pp.
337
358
.10.5772/14625
26.
Zheng
,
Z. M.
, and
Ma
,
Z. K.
,
1959
, “
Vibration of Cantilever Beam Placed Against Water With Free Surface
,”
Acta Mech. Sin.
,
3
(
2
), pp.
111
119
(in Chinese). https://en.cnki.com.cn/Article_en/CJFDTotal-LXXB195902002.htm
27.
Liao
,
C.-Y.
,
Wu
,
Y.-C.
,
Chang
,
C.-Y.
, and
Ma
,
C.-C.
,
2017
, “
Theoretical Analysis Based on Fundamental Functions of Thin Plate and Experimental Measurement for Vibration Characteristics of a Plate Coupled With Liquid
,”
J. Sound Vib.
,
394
, pp.
545
574
.10.1016/j.jsv.2017.01.023
28.
Kerboua
,
Y.
,
Lakis
,
A. A.
,
Thomas
,
M.
, and
Marcouiller
,
L.
,
2008
, “
Vibration Analysis of Rectangular Plates Coupled With Fluid
,”
Appl. Math. Model
,
32
(
12
), pp.
2570
2586
.10.1016/j.apm.2007.09.004
29.
Bathe
,
K. J.
, and
Dvorkin
,
E. N.
,
1985
, “
A Four-Node Plate Bending Element Based on Mindlin/Reissner Plate Theory and a Mixed Interpolation
,”
Int. J. Numer. Meth. Eng.
,
21
(
2
), pp.
367
383
.10.1002/nme.1620210213
30.
Davidsson
,
P.
,
2004
, “Structure-Acoustic Analysis: Finite Element Modelling and Reduction Methods,”
Ph.D. thesis
, Lund University, Lund, Sweden.https://www.byggmek.lth.se/fileadmin/byggnadsmekanik/publications/tvsm1000/web1018.pdf
31.
Desmet
,
W.
, and
Vandepitte
,
D.
,
1999
, “
Finite Element Method in Acoustics
,”
Proceedings of the International Seminar on Applied Acoustics
, Leuven, Belgium, Sept. 14.
32.
Sandberg
,
G.
,
1995
, “
A New Strategy for Solving Fluid-Structure Problems
,”
Int. J. Numer. Meth. Eng.
,
38
(
3
), pp.
357
370
.10.1002/nme.1620380302
33.
Čermák
,
M.
,
Sysala
,
S.
, and
Valdman
,
J.
,
2019
, “
Efficient and Flexible MATLAB Implementation of 2D and 3D Elastoplastic Problems
,”
Appl. Math. Comput.
,
355
, pp.
595
614
.10.1016/j.amc.2019.02.054
34.
Shepherd
,
J. E.
, and
Inaba
,
K.
,
2009
, “
Shock Loading and Failure of Fluid-Filled Tubular Structures. Dynamic Failure of Materials and Structures
,” Springer, Boston, MA, pp.
153
190
.
35.
Gercek
,
H.
,
2007
, “
Poisson's Ratio Values for Rocks
,”
Int. J. Rock Mech. Min. Sci.
,
44
(
1
), pp.
1
13
.10.1016/j.ijrmms.2006.04.011
You do not currently have access to this content.