High-energy synchrotron radiation has proven to be a powerful technique for investigating fundamental deformation processes for various materials, particularly metals and alloys. In this study, high-energy synchrotron X-ray diffraction (XRD) was used to evaluate Alloy 617 and Alloy 230, both of which are top candidate structural materials for the very-high-temperature reactor (VHTR). Uniaxial tensile experiments using in-situ high-energy X-ray exposure showed the substantial advantages of this synchrotron technique. First, the small volume fractions of carbides, e.g., ∼6% of M6C in Alloy 230, which are difficult to observe using laboratory-based X-ray machines or neutron scattering facilities, were successfully examined using high-energy X-ray diffraction. Second, the loading processes of the austenitic matrix and carbides were separately studied by analyzing their respective lattice strain evolutions. In the present study, the focus was placed on Alloy 230. Although the Bragg reflections from the γ matrix behave differently, the lattice strain measured from these reflections responds linearly to external applied stress. In contrast, the lattice strain evolution for carbides is more complicated. During the transition from the elastic to the plastic regime, carbide particles experience a dramatic loading process, and their internal stress rapidly reaches the maximum value that can be withstood. The internal stress for the particles then decreases slowly with increasing applied stress. This indicates a continued particle fracture process during plastic deformations of the γ matrix. The study showed that high-energy synchrotron X-ray radiation, as a nondestructive technique for in-situ measurement, can be applied to ongoing material research for nuclear applications.

References

1.
Butler
,
D.
,
2004
, “
Energy: Nuclear Power's New Dawn
,”
Nature
,
429
, pp.
238
240
.10.1038/429238a
2.
“A Technology Roadmap for Generation IV Nuclear Energy Systems
,”
2002
, U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum. Report No. GIF-002-00.
3.
Mo
,
K.
,
Lovicu
,
G.
,
Tung
,
H. M.
,
Chen
,
X. A.
, and
Stubbins
,
J. F.
,
2011
, “
High Temperature Aging and Corrosion Study on Alloy 617 and Alloy 230
,”
ASME J. Eng. Gas Turbines Power
,
133
, p.
052908
.10.1115/1.4002819
4.
Natesan
,
K.
,
Purohit
,
A.
, and
Tam
,
S. W.
,
2003
, “
Materials Behavior in HTGR Environments
,” NUREG/CR-6824, p.
85
.
5.
Corwin
,
W. R.
,
Burchell
,
T. D.
,
Duty
,
C. E.
,
Katoh
,
Y.
,
Klett
,
J. W.
,
McGreevy
,
T. E.
,
Nanstad
,
R. K.
,
Ren
,
W.
,
Rittenhouse
,
P. L.
,
Snead
,
L. L.
,
Swindeman
,
R. W.
, and
Wilson
,
D. F.
,
2006
, “
Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 3
,” Report No. INL/EXT-06-11701.
6.
Wright
,
J. K.
,
Wright
,
R. N.
, and
Sham
,
T.-L.
,
2010
, “
Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan
,” Report No. PLN-2804.
7.
Ren
,
W. J.
, and
Swindeman
,
R.
,
2009
, “
A Review on Current Status of Alloys 617 and 230 for Gen IV Nuclear Reactor Internals and Heat Exchangers
,”
ASME J. Pressure Vessel Technol.
,
131
, p.
044002
.10.1115/1.3121522
8.
Ren
,
W. J.
, and
Swimdeman
,
R.
,
2009
, “
A Review Paper on Aging Effects in Alloy 617 for Gen IV Nuclear Reactor Applications
,”
ASME J. Pressure Vessel Technol.
,
131
, p.
024002
.10.1115/1.2967885
9.
Mo
,
K.
,
Lovicu
,
G.
,
Tung
,
H.-M.
,
Chen
,
X.
, and
Stubbins
,
2010
, “
Microstructural Evolution of Alloy 617 and Alloy 230 Following High Temperature Aging
,”
ASME 2010 Pressure Vessels & Piping Division/K-PVP Conference
,
Bellevue, Washington
, 25847.
10.
Cappelaere
,
M.
,
Perrot
,
M.
, and
Sannier
,
J.
,
1984
, “
Behavior of Metallic Materials Between 550 °C and 870 °C in High-Temperature Gas-Cooled Reactor Helium Under Pressures of 2 Bar and 50 Bar
,”
Nucl Technol
,
66
, pp.
465
478
.
11.
Yun
,
H. M.
,
Ennis
,
P. J.
,
Nickel
,
H.
, and
Schuster
,
H.
,
1984
, “
The Effect of High-Temperature Reactor Primary Circuit Helium on the Formation and Propagation of Surface Cracks in Alloy 800-H and Inconel-617
,”
J. Nucl. Mater.
,
125
, pp.
258
272
.10.1016/0022-3115(84)90553-1
12.
Shankar
,
P. S.
, and
Natesan
,
K.
,
2007
, “
Effect of Trace Impurities in Helium on the Creep Behavior of Alloy 617 for Very High Temperature Reactor Applications
,”
J. Nucl. Mater.
,
366
, pp.
28
36
.10.1016/j.jnucmat.2006.12.028
13.
Lillo
,
T.
,
Cole
,
J.
,
Frary
,
M.
, and
Schlegel
,
S.
,
2009
, “
Influence of Grain Boundary Character on Creep Void Formation in Alloy 617
,”
Metall. Mater. Trans. A
,
40A
, pp.
2803
2811
.10.1007/s11661-009-0051-7
14.
Schlegel
,
S.
,
Hopkins
,
S.
,
Young
,
E.
,
Cole
,
J.
,
Lillo
,
T.
, and
Frary
,
M.
,
2009
, “
Precipitate Redistribution During Creep of Alloy 617
,”
Metall. Mater. Trans. A
,
40A
, pp.
2812
2823
.10.1007/s11661-009-0027-7
15.
Jang
,
C.
,
Lee
,
D.
, and
Kim
,
D.
,
2008
, “
Oxidation Behaviour of an Alloy 617 in Very High-Temperature Air and Helium Environments
,”
Int. J. Pressure Vessels Piping
,
85
, pp.
368
377
.10.1016/j.ijpvp.2007.11.010
16.
Cabet
,
C.
,
Terlain
,
A.
,
Lett
,
P.
,
Guetaz
,
L.
, and
Gentzbittel
,
J. M.
,
2006
, “
High Temperature Corrosion of Structural Materials Under Gas-Cooled Reactor Helium
,”
Mater. Corros.
,
57
, pp.
147
153
.10.1002/maco.200503901
17.
Cabet
,
C.
,
Chapovaloff
,
J.
,
Rouillard
,
F.
,
Girardin
,
G.
,
Kaczorowski
,
D.
,
Wolski
,
K.
, and
Pijolat
,
M.
,
2008
, “
High Temperature Reactivity of Two Chromium-Containing Alloys in Impure Helium
,”
J. Nucl. Mater.
,
375
, pp.
173
184
.10.1016/j.jnucmat.2007.11.006
18.
Cabet
,
C.
, and
Rouillard
,
F.
,
2009
, “
Corrosion of High Temperature Metallic Materials in VHTR
,”
J. Nucl. Mater.
,
392
, pp.
235
242
.10.1016/j.jnucmat.2009.03.029
19.
Cabet
,
C.
, and
Rouillard
,
F.
,
2009
, “
Corrosion Issues of High Temperature Reactor Structural Metallic Materials
,”
ASME J. Eng. Gas Turbines Power
,
131
, p.
062902
.10.1115/1.3098377
20.
Cabet
,
C.
,
Jang
,
J.
,
Konys
,
J.
, and
Tortorelli
,
P. F.
,
2009
, “
Environmental Degradation of Materials in Advanced Reactors
,”
MRS Bull.
,
34
, pp.
35
39
.10.1557/mrs2009.10
21.
Young
,
M. L.
,
DeFouw
,
J.
,
Almer
,
J. D.
, and
Dunand
,
D. C.
,
2007
, “
Load Partitioning During Compressive Loading of a Mg/MgB2 Composite
,”
Acta Mater.
,
55
, pp.
3467
3478
.10.1016/j.actamat.2007.01.046
22.
Young
,
M. L.
,
Almer
,
J. D.
,
Daymond
,
M. R.
,
Haeffner
,
D. R.
, and
Dunand
,
D. C.
,
2007
, “
Load Partitioning Between Ferrite and Cementite During Elasto-Plastic Deformation of an Ultrahigh-Carbon Steel
,”
Acta Mater.
,
55
, pp.
1999
2011
.10.1016/j.actamat.2006.11.004
23.
Cheng
,
S.
,
Stoica
,
A. D.
,
Wang
,
X. L.
,
Ren
,
R.
,
Almer
,
J.
,
Horton
,
J. A.
,
Liu
,
C. T.
,
Clausen
,
B.
,
Brown
,
D. W.
,
Liaw
,
P. K.
, and
Zuo
,
L.
,
2009
, “
Deformation Crossover: From Nano- to Mesoscale
,”
Phys. Rev. Lett.
,
103
, p.
035502
.10.1103/PhysRevLett.103.035502
24.
Jakobsen
,
B.
,
Poulsen
,
H. F.
,
Lienert
,
U.
,
Almer
,
J.
,
Shastri
,
S. D.
,
Sorensen
,
H. O.
,
Gundlach
,
C.
, and
Pantleon
,
W.
,
2006
, “
Formation and Subdivision of Deformation Structures During Plastic Deformation
,”
Science
,
312
, pp.
889
892
.10.1126/science.1124141
25.
Mankins
,
W. L.
,
Hosier
,
J. C.
, and
Bassford
,
T. H.
,
1974
, “
Microstructure and Phase-Stability of Inconel Alloy 617
,”
Metall. Trans.
,
5
, pp.
2579
2590
.10.1007/BF02643879
26.
Tawancy
,
H. M.
,
Klarstrom
,
D. L.
, and
Rothman
,
M. F.
,
1984
, “
Development of a New Nickel-Base Superalloy
,”
J. Met.
,
36
, pp.
58
62
.
27.
Almer
,
J.
,
Lienert
,
U.
,
Peng
,
R. L.
,
Schlauer
,
C.
, and
Oden
,
M.
,
2003
, “
Strain and Texture Analysis of Coatings Using High-Energy X-Rays
,”
J. Appl. Phys.
,
94
, pp.
697
702
.10.1063/1.1582351
28.
Pan
,
X.
,
Wu
,
X. L.
,
Chen
,
X.
,
Mo
,
K.
,
Almer
,
J.
,
Haeffner
,
D. R.
, and
Stubbins
,
J. F.
,
2010
, “
Temperature and Particle Size Effects on Flow Localization of 9-12%Cr Ferritic/Martensitic Steel by In Situ X-Ray Diffraction and Small Angle Scattering
,”
J. Nucl. Mater.
,
398
, pp.
220
226
.10.1016/j.jnucmat.2009.10.035
29.
Hutchings
,
M. T.
,
Withers
,
P. J.
,
Holden
,
T. M.
, and
Lorentzen
,
T.
,
2005
,
Introduction to the Characterization of Residual Stress by Neutron Diffraction
,
Taylor & Francis Group
,
LLC
.
30.
Noyan
,
I. C.
, and
Cohen
,
J. B.
,
1987
,
Residual Stress, Measurement by Diffraction and Interpretation
,
Springer-Verlag
,
New York
.
31.
Fitzpatrick
,
M. E.
, and
Lodini
,
A.
,
2003
,
Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation
,
Taylor & Francis Inc.
, London.
32.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R Soc. London, Ser. A
,
241
, pp.
376
396
.10.1098/rspa.1957.0133
33.
Pottebohm
,
H.
,
Neite
,
G.
, and
Nembach
,
E.
,
1983
, “
Elastic Properties (the Stiffness Constants, the Shear Modulus and the Dislocation Line Energy and Tension) of Ni-Al Solid-Solutions and of the Nimonic Alloy Pe16
,”
Mater. Sci. Eng.
,
60
, pp.
189
194
.10.1016/0025-5416(83)90001-0
34.
Clausen
,
B.
,
Lorentzen
,
T.
, and
Leffers
,
T.
,
1998
, “
Self-Consistent Modelling of the Plastic Deformation of FCC Polycrystals and Its Implications for Diffraction Measurements of Internal Stresses
,”
Acta Mater.
,
46
, pp.
3087
3098
.10.1016/S1359-6454(98)00014-7
35.
Li
,
Y. F.
,
Gao
,
Y. M.
,
Fan
,
Z. J.
,
Xiao
,
B.
,
Yue
,
Q. W.
,
Min
,
T.
, and
Ma
,
S. Q.
,
2010
, “
First-Principles Study on the Stability and Mechanical Property of Eta M3W3C (M = Fe, Co, Ni) Compounds
,”
Physica B
,
405
, pp.
1011
1017
.10.1016/j.physb.2009.10.045
36.
Mishnaevsky
,
L.
,
Weber
,
U.
, and
Schmauder
,
S.
,
2004
, “
Numerical Analysis of the Effect of Microstructures of Particle-Reinforced Metallic Materials on the Crack Growth and Fracture Resistance
,”
Int. J. Fract.
,
125
, pp.
33
50
.10.1023/B:FRAC.0000021031.67717.9f
37.
Clausen
,
B.
,
Lorentzen
,
T.
,
Bourke
,
M. A. M.
, and
Daymond
,
M. R.
,
1999
, “
Lattice Strain Evolution During Uniaxial Tensile Loading of Stainless Steel
,”
Mater. Sci. Eng., A
,
259
, pp.
17
24
.10.1016/S0921-5093(98)00878-8
38.
Pan
,
X.
,
2008
, “
Tensile Fracture Mechansims of Ferritic/Martensitic Structural Materials
,” Ph.D. thesis, University of Illinois at Urbana-Champaign.
You do not currently have access to this content.