This study examined the fatigue strength and fracture toughness of the structural components of membrane type liquefied natural gas carrier (LNGC) insulation systems, such as reinforced poly-urethane foam (R-PUF, insulation material) and 304 L stainless steel (STS 304 L, Primary barrier membrane), at both ambient and cryogenic temperatures. The fatigue strength of the LNGC insulation system was compared with that of low density R-PUF (130 kg/m3) and high density R-PUF (210 kg/m3). The fracture toughness of R-PUF and STS 304 L was investigated in terms of the density effect of R-PUF and the difference in the nickel composition of STS 304 L, STS 304 L (10.2%Ni) versus STS 304 L (9.4%Ni) at both ambient and cryogenic temperatures. In this study, the high density R-PUF (210 kg/m3) and STS 304 L (9.4%Ni) were proposed to improve the structural strength of the LNGC insulation system and reduce the cost. The fracture toughness was characterized in terms of the critical strain energy release rate (GIC) in the context of linear elastic fracture mechanics (LEFM). The geometries of the fracture toughness test used were the center-cracked tension (CCT) and double-edge-cracked tension (DECT) specimens according to ASTM STP381 standard.

References

1.
Lee
,
H.
,
Kim
,
J. W.
, and
Hwang
,
C.
,
2004
, “
Dynamic Strength Analysis for Membrane Type LNG Containment System Due to Sloshing Impact Load
,”
Proceedings of the International Conference on Design and Operation of Gas Carriers
. London, UK.
2.
Lee
,
J. M.
,
Paik
,
J. M.
,
Kim
,
M. H.
,
Yoon
,
J. W.
,
Choe
,
I. H.
,
Kim
,
W. S.
, and
Noh
,
B. J.
,
2006
, “
Strength of Membrane Type LNG Cargo Containment System Under Sloshing Impact
,”
World Maritime Technology Conference
, London, UK.
3.
Lee
,
H. B.
,
Park
,
B. J.
,
Rhee
,
S. H.
,
Bae
,
J. H.
,
Lee
,
K. W.
, and
Jeong
,
W. J.
,
2011
,
“Liquified Natural Gas Flow in the Insulation System Wall of a Cargo Containment System and Its Evaporation,”
Appl. Therm. Eng.
,
31
(14-15), p.
2605
.10.1016/j.applthermaleng.2011.04.028
4.
Chun
,
M. S.
,
Kim
,
M. H.
,
Kim
,
W. S.
,
Kim
,
S. H.
, and
Lee
,
J. M.
,
2009
,
“Experimental Investigation on the Impact Behavior of Membrane-Type LNG Carrier Insulation System,”
J. Loss Prev. Process Ind.
,
22
, pp.
901
907
.10.1016/j.jlp.2008.09.011
5.
Vanem
,
E.
,
Antaõ
,
P.
,
Østvik
,
I.
, and
Del Castillo de Comas
,
F.
,
2008
,
“Analysing the Risk of LNG Carrier Operations,”
Reliab. Eng. Syst. Saf.
,
93
, pp.
1328
1344
.10.1016/j.ress.2007.07.007
6.
Kim
,
B. C.
,
Yoon
,
S. H.
, and
Lee
,
D. G.
,
2011
,
“Pressure Resistance of the Corrugated Stainless Steel Membranes of LNG Carriers,”
J. Ocean Eng.
,
38
, pp.
592
608
.10.1016/j.oceaneng.2010.12.013
7.
Zalar
,
M.
,
Malenica
,
S.
,
Mravak
,
Z.
, and
Moirod
,
N.
,
2007
, “
Some Aspects of Direct Calculation Methods for the Assessment of LNG Tank Structure Under Sloshing Impact
,”
Proceedings of the International Conference on Liquefied Natural Gas
, Barcelona, Spain.
8.
Kim
,
M. H.
,
Lee
,
S. M.
,
Lee
,
J. M.
,
Noh
,
B. J.
, and
Kim
,
W. S.
,
2010
,
“Fatigue Strength Assessment of Mark-III Type LNG Cargo Containment System,”
J. Ocean Eng.
,
37
, pp.
1243
1252
.10.1016/j.oceaneng.2010.05.004
9.
Srawley
,
J. E.
, and
Brown
,
W. F.
,
1964
, “
Fracture Toughness Testing Methods, Fracture Toughness Testing and Its Applications
,” ASTM Special Technical Publication No. 381, pp.
189
190
.
10.
Mclntyre
,
A.
, and
Anderton
,
G. E.
,
1979
,
“Fracture Properties of a Rigid Polyurethane Foam over a Range of Densities,”
Polymer
,
20
, pp.
247
253
.10.1016/0032-3861(79)90229-5
11.
Cotgreave
,
T.
, and
Shortall
,
J. B.
,
1978
,
“The Fracture Toughness of Reinforced Polyurethane Foam,”
J. Mater. Sci.
,
13
, pp.
722
730
.10.1007/BF00570506
12.
Fowlkes
,
C. W.
,
1974
,
“Fracture Toughness Tests of a Rigid Poly-Urethane Foam,”
Int. J. Fract.
,
10
, pp.
99
108
.10.1007/BF00955084
You do not currently have access to this content.