To capture the mechanical response of Ni-based materials, creep deformation and rupture experiments are typically performed. Long term tests, mimicking service conditions at 10,000 h or more, are generally avoided due to expense. Phenomenological models such as the classical Kachanov–Rabotnov (Rabotnov, 1969, Creep Problems in Structural Members, North-Holland, Amsterdam; Kachanov, 1958, “Time to Rupture Process Under Creep Conditions,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Mekh. Mashin., 8, pp. 26–31) model can accurately estimate tertiary creep damage over extended histories. Creep deformation and rupture experiments are conducted on IN617 a polycrystalline Ni-based alloy over a range of temperatures and applied stresses. The continuum damage model is extended to account for temperature dependence. This allows the modeling of creep deformation at temperatures between available creep rupture data and the design of full-scale parts containing temperature distributions. Implementation of the Hayhurst (1983, “On the Role of Continuum Damage on Structural Mechanics,” in Engineering Approaches to High Temperature Design, Pineridge, Swansea, pp. 85–176) (tri-axial) stress formulation introduces tensile/compressive asymmetry to the model. This allows compressive loading to be considered for compression loaded gas turbine components such as transition pieces. A new dominant deformation approach is provided to predict the dominant creep mode over time. This leads to development of a new methodology for determining the creep stage and strain of parametric stress and temperature simulations over time.

1.
Hoff
,
N. J.
, 1953, “
Necking and Rupture of Rods Subjected to Constant Tensile Loads
,”
ASME J. Appl. Mech.
0021-8936,
20
(
1
), pp.
105
108
.
2.
Hyde
,
T. H.
,
Xia
,
L.
, and
Becker
,
A. A.
, 1996, “
Prediction of Creep Failure in Aeroengine Materials Under Multiaxial Stress States
,”
Int. J. Mech. Sci.
0020-7403,
38
(
4
), pp.
385
403
.
3.
Jeong
,
C. Y.
,
Nam
,
S. W.
, and
Ginsztler
,
J.
, 1999, “
Stress Dependence on Stress Relaxation Creep Rate During Tensile Holding Under Creep-Fatigue Interaction in 1Cr-Mo-V Steel
,”
J. Mater. Sci.
0022-2461,
34
(
11
), pp.
2513
2517
.
4.
Rabotnov
,
Y. N.
, 1969,
Creep Problems in Structural Members
,
North-Holland
,
Amsterdam
.
5.
Kachanov
,
L. M.
, 1958, “
Time to Rupture Process Under Creep Conditions
,”
Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Mekh. Mashin.
,
8
, pp.
26
31
.
6.
McGaw
,
M. A.
, 1993, “
Cumulative Damage Concepts in Thermomechanical Fatigue
,”
Thermomechanical Fatigue Behavior of Materials
,
H.
Sehitoglu
, ed.,
American Society of Testing and Materials
,
Philadelphia, PA
, ASTM STP 1186, pp.
144
156
.
7.
Hyde
,
T. H.
,
Becker
,
A. A.
, and
Sun
,
W.
, 2001, “
Creep Damage Analysis of Short Cracks Using Narrow Notch Specimen Made From a Ni-Base Superalloy at 700°C
,”
10th International Conference on Fracture
, Honolulu, HI.
8.
Altenbach
,
J.
,
Altenbach
,
H.
, and
Naumenko
,
K.
, 2004, “
Edge Effects in Moderately Think Plates Under Creep-Damage Conditions
,”
Technische Mechanik
,
24
(
3–4
), pp.
254
263
0232-3869.
9.
Hayhurst
,
D. R.
, 1983, “
On the Role of Continuum Damage on Structural Mechanics
,”
Engineering Approaches to High Temperature Design
,
B.
Wilshire
and
D. R.
Owen
, eds.,
Pineridge
,
Swansea
, pp.
85
176
.
10.
Murakami
,
S.
, and
Ohno
,
N.
, 1980, “
A Continuum Theory of Creep and Creep Damage
,”
Third IUTAM Symposium Creep in Structures
, Leicester, UK, pp.
422
444
.
11.
Kim
,
W. G.
,
Yin
,
S. N.
,
Ryu
,
W. S.
, and
Jang
,
J. H.
, 2007, “
Analysis of the Creep Rupture Data of Alloy 617 for a High Temperature Gas Cooled Reactor
,”
Eighth International Conference on Creep Fatigue at Elevated Temperatures
, San Antonio, TX.
12.
Aghaie-Khafri
,
M.
, and
Hajjavady
,
M.
, 2008, “
The Effect of Thermal Exposure on the Properties of a Ni-Base Superalloy
,”
Mater. Sci. Eng., A
0921-5093,
487
, pp.
388
393
.
13.
Lai
,
G. Y.
, 1994, “
Nitridation Attack in Simulated Gas Turbine Combustion Environment
,”
Conference of Materials for Advanced Power Engineering 1994
, Liège, Belgium, pp.
1263
1272
.
14.
Misseijer
,
R. C.
,
Thabit
,
T. I.
, and
Mattheij
,
J. H. G.
, 1996, “
Operational Evaluation of Patch Repaired Combustion Gas Turbine Transition Pieces
,”
J. Qual. Maint. Eng.
1355-2511,
2
(
4
), pp.
59
70
.
15.
ThyssenKrupp VDM GmbH
, 1994, “
Nicrofer® 5520 Co-Alloy 617
,” Material Data Sheet No. 4019, Werdohl, Germany.
16.
Venkatesh
,
A.
,
Marthandam
,
V.
, and
Roy
,
A. K.
, 2007, “
Tensile Deformation and Fracture Toughness Characterization of Alloys 617 and 718
,”
Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics
,
2
(
1
), pp.
690
696
.
17.
Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials
,” ASTM E-139, No. 03.01, West Conshohocken, PA.
18.
Cook
,
R. H.
, 1984, “
Creep properties of Inconel-617 in Air and Helium at 800 to 1000°C
,”
Nucl. Technol.
0029-5450,
66
(
2
), pp.
283
288
.
19.
Laanemae
,
W. M.
,
Bothe
,
K.
, and
Gerold
,
V.
, 1989, “
High Temperature Mechanical Behaviour of Alloy 617. 2. Lifetime and Damage Mechanisms
,”
Z. Metallkd.
0044-3093,
80
(
12
), pp.
847
857
.
20.
Sharma
,
S. K.
,
Ka
,
G. D.
,
Li
,
F. X.
, and
Kang
,
K. J.
, 2008, “
Oxidation and Creep Failure of Alloy 617 Foils at High Temperature
,”
J. Nucl. Mater.
0022-3115,
378
(
2
), pp.
144
152
.
21.
European Alloy-DB, Licensed CD, European Commission, Joint Research Centre (JRC).
22.
Schubert
,
F.
,
Bruch
,
U.
,
Cook
,
R.
,
Diehl
,
H.
,
Ennis
,
P. J.
,
Jakobeit
,
W.
,
Penkalla
,
H. J.
,
Heesen
,
E. T.
, and
Ulirich
,
G.
, 1984, “
Creep Rupture Behavior of Candidate Materials for Nuclear Process Heat Applications
,”
Nucl. Technol.
0029-5450,
66
(
2
), pp.
227
239
.
23.
Natesan
,
K.
,
Purohit
,
A.
, and
Tam
,
S. W.
, 2003, “
Materials Behavior in HTGR Environments
,” Argonne National Laboratory, Report No. NUREG/CR-6824.
24.
Zuo
,
M.
,
Chiovelli
,
S.
, and
Nonaka
,
Y.
, 2000, “
Fitting Creep-Rupture Life Distribution Using Accelerated Life Testing Data
,”
ASME J. Pressure Vessel Technol.
0094-9930,
122
(
4
), pp.
482
487
.
25.
Weber
,
J.
,
Klenk
,
A.
, and
Rieke
,
M.
, 2005, “
A New Method of Strength Calculation and Lifetime Prediction of Pipe Bends Operating in the Creep Range
,”
Int. J. Pressure Vessels Piping
0308-0161,
82
(
2
), pp.
77
84
.
26.
Kouhia
,
R.
,
Marjamaki
,
P.
, and
Kivilahti
,
J.
, 2005, “
On the Implicit Integration of Rate-Dependent Inelastic Constitutive Models
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
(
13
), pp.
1832
1856
.
27.
Shankar
,
P. S.
, and
Natesan
,
K.
, 2007, “
Effect of Trace Impurities in Helium on the Creep Behavior of Alloy 617 for Very High Temperature Reactor Applications
,”
J. Nucl. Mater.
0022-3115,
366
(
1–2
), pp.
28
36
.
28.
Mustata
,
R.
, and
Hayhurst
,
D. R.
, 2005, “
Creep Constitutive Equations for a 0.5Cr 0.5 Mo 0.25V Ferritic Steel in the Temperature Range 565°C–675°C
,”
Int. J. Pressure Vessels Piping
0308-0161
82
(
5
), pp.
363
372
.
29.
Kakehi
,
K.
, 1999, “
Tension/Compression Asymmetry in Creep Behavior of a Ni-Based Superalloy
,”
Scr. Mater.
1359-6462,
41
(
5
), pp.
461
465
.
30.
Sondhi
,
S. K.
,
Dyson
,
B. F.
, and
McLean
,
M.
, 2004, “
Tension–Compression Creep Asymmetry in a Turbine Disc Superalloy: Roles of Internal Stress and Thermal Ageing
,”
Acta Mater.
1359-6454,
52
(
7
), pp.
1761
1772
.
31.
Yamashita
,
M.
, and
Kakehi
,
K.
, 2006, “
Tension/Compression Asymmetry in Yield and Creep Strengths of Ni-Based Superalloy With a High Amount of Tantalum
,”
Scr. Mater.
1359-6462,
55
(
2
), pp.
139
142
.
32.
Viswanathan
,
R.
, and
Scheirer
,
S. T.
, 2001, “
Materials Technology for Advanced Land Based Gas Turbines
,”
Creep: Proceedings of the International Conference on Creep and Fatigue at Elevated Temperatures
, Tsukuba, Japan, No. 01-201 (20010603), pp.
7
21
.
33.
Hayhurst
,
D. R.
, 1972, “
Creep Rupture Under Multiaxial States of Stress
,”
J. Mech. Phys. Solids
0022-5096,
20
, pp.
381
390
.
You do not currently have access to this content.