A stress intensity factor solution for a cracked slab subjected to an arbitrary thermal shock on one surface has been derived. As a first step, the transient temperature distribution was calculated for an arbitrary surface loading through the use of Duhamul’s integral relationship and the unit response for a slab that is insulated on the other face. The arbitrary nature of the transient surface loading was accommodated by a versatile polynomial containing both integral- and half-order terms. Once the resulting transient stress states were determined via elasticity theory, the resulting stress intensification for an arbitrary crack was approximated using a weight-function approach. The procedure was checked with known stress intensity solutions for an edge-cracked plate subjected to a linear down shock followed by a constant temperature soak. Excellent agreement was observed for this test case for a variety of crack lengths.

1.
Vedula
,
V. R.
,
Green
,
D. J.
,
Hellmann
,
J. R.
, and
Segall
,
A. E.
, 1999, “
Test Methodology for the Thermal Shock Characterization of Ceramics
,”
J. Mater. Sci.
0022-2461,
33
, pp.
5427
5432
.
2.
Segall
,
A. E.
,
Hellmann
,
J. R.
, and
Modest
,
M. F.
, 1991, “
Analysis of Gas-Fired Ceramic Radiant Tubes During Transient Heating
,”
J. Test. Eval.
0090-3973,
19
, pp.
454
460
.
3.
Segall
,
A. E.
,
Hellmann
,
J. R.
, and
Tressler
,
R. E.
, 1993, “
Thermal Shock and Fatigue Behavior of Ceramic Tubes
,”
Proc. of 10th Biennial ASME Conference on Reliability, Stress Analysis, and Failure Prevention
, New Mexico,
ASME
,
New York
, pp.
81
87
.
4.
Albrecht
,
W.
, 1969, “
How Thickness and Materials Properties Influence Thermal-Stresses in Flat Plates and Cylinders
,” ASME Paper No. G9-GT-107.
5.
Hasselman
,
D. P. H.
, 1970, “
Thermal Stress Resistance Parameters for Brittle Refractory Ceramics: A Compendium
,”
Bull. Am. Ceram. Soc.
0002-7812,
49
(
12
), pp.
1033
1037
.
6.
Shiratori
,
M.
,
Niyoshi
,
T.
, and
Tanikawa
,
K.
, 1987,
Stress Intensity Factor Handbook
,
Pergamon Press
,
London
, Vol.
I
.
7.
Shiratori
,
M.
,
Niyoshi
,
T.
, and
Tanikawa
,
K.
, 1987,
Stress Intensity Factor Handbook
,
Pergamon Press
,
London
, Vol.
II
.
8.
El-Fattah
,
Abd
,
Rizk
,
A.
, and
Radwan
,
S. F.
, 1993, “
Fracture of a Plate Under Transient Thermal Stresses
,”
J. Therm. Stresses
0149-5739,
16
, pp.
79
102
.
9.
Lee
,
K. Y.
, and
Sim
,
K. B.
, 1990, “
Thermal Shock Stress Intensity Factor by Bueckner’s Weight Function Method
,”
Eng. Fract. Mech.
0013-7944,
37
, pp.
799
804
.
10.
Emory
,
F.
,
Walker
, Jr.,
G. E.
, and
Williams
,
J. A.
, 1969, “
Green’s Function for the Stress Intensity Factors of Edge Cracks and its Application to Thermal Stresses
,”
ASME J. Basic Eng.
0021-9223,
91
, pp.
618
624
.
11.
Nied
,
H. F.
, 1987, “
Thermal Shock is an Edge-Cracked Plate Subjected to Uniform Surface Heating
,”
Eng. Fract. Mech.
0013-7944,
26
, pp.
239
246
.
12.
Kim
,
Y. W.
,
Lee
,
J. H.
, and
Yoo
,
B.
, 1994, “
An Analysis of Stress Intensity Factors for Thermal Transient Problems Based on Green’s Function
,”
Eng. Fract. Mech.
0013-7944,
49
, pp.
393
403
.
13.
Tu
,
J. J.
, and
Segall
,
A. E.
, 1997, “
Thermomechanical Analysis of a Complex, Refractory Tundish Flow Modifier During Preheating
,”
Proc. of Unified International Technical Conference on Refractories, 5th Biennial Worldwide Congress
, New Orleans,
M. A.
Stett
, ed.,
American Ceramic Society
, Westerville, OH, pp.
389
397
.
14.
Bueckner
,
P.
, 1971, “
Weight Functions for the Notched Bar
,”
Z. Angew. Math. Mech.
0044-2267,
51
, pp.
97
109
.
15.
Chen
,
S. H.
, 1961, “
One-Dimensional Heat Conduction With Arbitrary Heating Rate
,”
J. Aerosp. Sci.
0095-9820,
28
(
4
), pp.
336
337
.
16.
Austin
,
J. B.
, 1932, “
Temperature Distribution in Solid Bodies During Heating or Cooling
,”
Physics (N.Y.)
0092-8437,
3
, pp.
179
183
.
17.
Fodor
,
G.
, 1965,
Laplace Transforms in Engineering
,
Akademiai Kiado
,
Budapest
.
18.
Segall
,
A. E.
, 2003, “
Thermal Stresses in an Infinite Slab under an Arbitrary Thermal Shock
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
779
782
.
19.
Gaver
,
D. P.
, 1966, “
Observing Stochastic Processes and Approximate Transform Inversion
,”
Oper. Res.
0030-364X,
14
(
3
), pp.
444
459
.
20.
Stehfest
,
H.
, 1970, “
Numerical Inversion of Laplace Transforms
,”
Commun. ACM
0001-0782,
13
, pp.
47
49
.
21.
Woo
,
K.
, 1980, “
TI-59 Inverts Laplace Transforms for Time-Domain Analysis
,”
Electronics
0013-5070,
53
(
22
), pp.
178
179
.
You do not currently have access to this content.