Sachs’ method is an experimental procedure used primarily in the determination of residual stresses in autofrettaged thick cylinders. In its usual form it involves fixing axial and hoop direction strain gauges to the OD of a tube; strain readings are then obtained after each incremental removal of material from the bore. Sachs’ analysis assumes that the remaining tube unloads in linear-elastic fashion throughout the process and that superposition may therefore be employed to quantify the residual stresses within the original tube. By numerical simulation of two complete Sachs’ experimental sequences with “open end” conditions it is demonstrated that the assumption of elastic unloading is invalidated by the Bauschinger effect. Sachs’ method thereby overestimates compressive residual bore hoop stresses in a typical tube by between 24% and 43%. If used as the basis for cyclic pressurization fatigue lifetime predictions with pre-existing cracks, such discrepancies will cause overestimates in fatigue lifetime of an order of magnitude. Sachs’ experimental procedure is therefore not recommended as a reliable or conservative method for determination of residual stress.

1.
Sachs
,
G.
,
1927
, “
The Determination of Residual Stresses in Rods and Tubes
,”
Z. Metallk.
,
19
, p.
352
352
.
2.
Beeuwkes, R., 1942, private communication and working sheets, Watertown Arsenal, MA.
3.
Weiss, V., 1956, “Residual Stresses in Cylinders,” Report No. MET 345-563T2, Syracuse University Research Institute.
4.
Davidson
,
T. E.
,
Kendall
,
D. P.
, and
Reiner
,
A. N.
,
1963
, “
Residual Stresses in Thick-Walled Cylinders Resulting from Mechanically Induced Overstrain
,”
Exp. Mech.
,
pp.
253
262
.
5.
Parker
,
A. P.
,
Underwood
,
J. H.
, and
Kendall
,
D. P.
,
1999
, “
Bauschinger Effect Design Procedures for Autofrettaged Tubes Including Material Removal and Sachs’ Method
,”
ASME J. Pressure Vessel Technol.
,
121
, pp.
430
437
.
6.
Bauschinger, J., 1881, “Ueber die Veranderung der Elasticitatagrenze und dea Elasticitatamoduls verschiadener Metalle,” Zivilingenieur, 27, pp. 289–348.
7.
Parker
,
A. P.
,
2001
, “
Autofrettage of Open End Tubes—Pressures, Stresses, Strains, and Code Comparisons
,”
ASME J. Pressure Vessel Technol.
,
123
, pp.
271
281
.
8.
Jahed
,
H.
, and
Dubey
,
R. N.
,
1997
, “
An Axisymmetric Method of Elastic-Plastic Analysis Capable of Predicting Residual Stress Field
,”
ASME J. Pressure Vessel Technol.
,
119
, pp.
264
273
.
9.
Milligan
,
R. V.
,
Koo
,
W. H.
, and
Davidson
,
T. E.
,
1966
, “
The Bauschinger Effect in a High Strength Steel
,”
ASME J. Basic Eng.
,
88
, pp.
480
488
.
10.
Paris
,
P. C.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
, pp.
528
534
.
11.
Hill, R., 1967, The Mathematical Theory of Plasticity, Oxford University Press.
You do not currently have access to this content.